节点文献

基于卡尔曼滤波的压缩感知卫星信号捕获算法研究

The signal acquisition for compressive sensing based on Kalman filtering

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李灯熬邓豆豆赵菊敏赵晓芳韩冲

【Author】 LI Deng-ao;DENG Dou-dou;ZHAO Ju-min;ZHAO Xiaofang;HAN Chong;Taiyuan university of Technology;

【机构】 太原理工大学信息工程学院

【摘要】 卫星信号的捕获过程需要一定的硬件资源,且消耗时间,为了节约硬件资源,减少成本,同时为了提高捕获性能,去除量测噪声,文章提出一种基于卡尔曼滤波的压缩感知卫星信号捕获算法。首先,分析北斗卫星信号的稀疏性,构造稀疏变换矩阵,选择测量矩阵进行观测;其次,在信号重构阶段引入Kalman滤波,用Kalman滤波代替最小二乘法,每次迭代都获得最佳信号估计,同时采用弱匹配的方式筛选有效信息,剔除冗余信息从而重构信号。最后得到码相位的准确估计值。实验结果表明,与传统的捕获算法相比,该算法重构性能好,且大大地降低了硬件接收机的成本,计算量明显减少。

【Abstract】 The satellite signal acquisition process needs certain hardware resources, and time consuming, in order to save hardware resources, reduce costs, improve the capture performance, and the removal of measurement noise, a new algorithm of signal acquisition for compressed sensing based on Kalman filtering is proposed. Firstly, the sparsity of Beidou satellite signals is analyzed, the sparse transformation matrix is constructed and the measurement matrix is selected for observation. Secondly, the introduction of Kalman filtering in the signal reconstruction phase, using Kalman filtering instead of least squares, each iteration to get the best signal estimation, at the same time with the method of weak match filtering information effectively, eliminate redundant information to reconstruct the signal. Finally, the accurate estimation of the code phase is obtained. The experimental results show that compared with the traditional capture algorithm, the reconstruction performance is good, and the cost of the hardware receiver is greatly reduced, the calculation quantity is obviously reduced, and the anti-noise performance is optimal.

【基金】 国家高技术研究发展计划(863计划)(课题编号2015AA016901)《高线性激光器和高饱和功率光探测器阵列芯片》;国家自然科学基金面上项目(批准号:61772358)《复杂地貌环境中BDS精密定位关键技术研究》;国家自然科学基金面上项目(批准号:61572347)《大规模移动群智感知中的资源优化理论与技术研究》;山西省国际科技合作项目(课题编号201603D421012)《基于群智感知的GNSS区域增强信息提取关键技术研究》
  • 【会议录名称】 第九届中国卫星导航学术年会论文集——S09 用户终端技术
  • 【会议名称】第九届中国卫星导航学术年会
  • 【会议时间】2018-05-23
  • 【会议地点】中国黑龙江哈尔滨
  • 【分类号】TN967.1
  • 【主办单位】中国卫星导航系统管理办公室学术交流中心
节点文献中: