节点文献

二次均匀GB-样条曲线

Quadratic Uniform GB-Spline Curves

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 郭清伟

【Author】 Qingwei Guo (Institute of Mathematics,Fudan University,Shanghai,00433) (Department of Mathematics,Hefei University of Technology Hefei,Anhui,230009)

【机构】 复旦大学数学所合肥工业大学理学院

【摘要】 给出一组带参数的二次多项式均匀B-样条基函数,以其为调配函数构造的二次多项式均匀B-样条曲线(称为二次多项式均匀GB-样条曲线),具有一个整体形状控制参数。又进一步,根据所给二次多项式均匀B-样条基函数,构造一组二次有理多项式均匀B-样条基函数,以其为调配函数构造的二次有理多项式均匀B-样条曲线(称为二次有理多项式均匀GB-样条曲线),具有局部形状控制参数,能很好地逼近圆且曲线形状更易控制。

【Abstract】 In this paper quadratic polynomial uniform B-spline bases are given which have a control shape parameter.The Quadratic polynomial uniform B-spline curves constructed by using this group of bases have a global control shape parameter and are named Quadratic polynomial uniform GB-spline curves. Furthermore quadratic rational polynomial uniform B-spline bases are obtained from quadratic polynomial uniform B-spline ones given.The Quadratic rational polynomial uniform B-spline curves presented by using this group of rational bases have a local control shape parameter and are named Quadratic rational polynomial uniform GB-spline curves,meanwhile this kind of rational curves can approximate circles effectively and its shape control is very easy.

【基金】 国家自然科学基金资助项目(No:60473114)
  • 【会议录名称】 几何设计与计算的新进展
  • 【会议名称】第二届全国几何设计与计算学术会议
  • 【会议时间】2005-04-16
  • 【会议地点】中国安徽合肥;中国安徽黄山
  • 【分类号】TP391.72
  • 【主办单位】中国工业与应用数学学会几何设计与计算专业委员会
节点文献中: