节点文献
汉语大词汇量连续语音识别中混淆网络算法的研究
Research on Confusion Network Algorithm Based on Minimum Bayes Risk Decision Rule
【Author】 WU Bin,LIU Gang,GUO Jun (School of Info.Eng.,Beijing Univ.of Posts and Telecommunications,Beijing 100876,China)
【机构】 北京邮电大学信息工程学院;
【摘要】 在汉语大词汇量连续语音识别中,以往基于最大后验概率准则解码得到的识别结果具有最小的句子错误率,为了得到字错误率最小的识别结果,可以采用最小贝叶斯风险解码策略,通过将识别输出的word lattice转换成为混淆网络以得到最小字错误率的识别结果。在以往混淆网络算法的基础上,根据汉语语言的特点,提出一种改进的构造混淆网络的算法。基于863测试语音库进行的实验表明,与最大后验概率识别结果和以前的两种混淆网络算法的识别结果相比,改进的混淆网络算法有效地降低汉语大词汇量连续语音识别结果的字错误率。
【Abstract】 In mandarin large vocabulary continuous speech recognition,the recognition result with minimum word error rate(WER) can be obtained by using minimum bayes risk(MBR) decoding strategy.One method of MBR decoding is that the word lattice can be transformed into confusion network in order to achieve the recognition result with minimum WER.According to the characteristic of Chinese linguistics,we proposed an improved algorithm of constructing confusion network for mandarin large vocabulary continuous speech recognition.Evaluated on the Chinese 863 speech corpus,experimental results show that compared with the MAP one-best decoding and previously proposed two confusion network algorithms,our improved algorithm effectively reduces the WER of recognition output hypothesis.
【Key words】 minimum bayes risk; Levenshtein distance; confusion network; WER; speech recognition;
- 【会议录名称】 第四届中国软件工程大会论文集
- 【会议名称】第四届中国软件工程大会
- 【会议时间】2007-06-16
- 【会议地点】中国浙江杭州
- 【分类号】TN912.34
- 【主办单位】中国软件工程大会CCSE专家理事会