节点文献
Boussinesq方程的两种高效二阶数值格式(英文)
Two Second-Order Efficient Numerical Schemes for the Boussinesq Equations
【摘要】 本文研究Boussinesq方程的高效数值求解问题,首先利用标量辅助变量(SAV)方法,将原Boussinesq方程改写为等价的Boussinesq方程,然后利用二阶后向微分公式(BDF2),Crank-Nicolson(CN)方法和压力校正法对其进行离散,得到两个二阶全解耦的时间离散格式.经过严格的理论分析,得到它们的无条件稳定性,唯一可解性和解耦的详细实现过程.最后,进行了各种二维数值模拟,验证了所提方案的精度和能量稳定性.
【Abstract】 In this paper, we construct two fully decoupled, second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach. By introducing a scalar auxiliary variable, the original Boussinesq system is transformed into an equivalent one. Then we discretize it using the second-order backward differentiation formula(BDF2) and Crank-Nicolson(CN) to obtain two second-order time-advanced schemes. In both numerical schemes, a pressure-correction method is employed to decouple the velocity and pressure. These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability. We rigorously prove both the unconditional stability and unique solvability of the discrete schemes. Furthermore, we provide detailed implementations of the decoupling procedures.Finally, various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
【Key words】 Scalar auxiliary variable approach; Pressure-correction method; Fully decoupled; Unconditional stability; Boussinesq equations;
- 【文献出处】 应用数学 ,Mathematica Applicata , 编辑部邮箱 ,2025年01期
- 【分类号】O241.82
- 【下载频次】15