节点文献

传统知识组织方法的智能力

Intelligent Capabilities of Traditional Knowledge Organization Methods

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 苏新宁

【Author】 SU Xinning;School of Information Management, Nanjing University;Jiangsu Key Laboratory of Data Engineering and Knowledge Service;

【机构】 南京大学信息管理学院江苏省数据工程与知识服务重点实验室

【摘要】 [目的/意义]通过对传统知识组织方法的体系、规则分析,凝练出传统知识组织方法的智能能力,并将其融入人工智能技术,以增强人工智能信息处理的精准与高效。[方法/过程]文章通过回顾知识组织的发展过程,分析传统知识组织方法的内在结构,深入探讨了传统知识组织方法的机理。[结果/结论]研究认为,知识组织经过数百年的发展演进,能从不同角度去反映各学科的知识体系、学科体系,能从知识多样化的关联建立知识间的语义关系,可采用科学的知识组织方法将不同形式、不同类型、不同结构的知识关联并融合在一起,这些能力为人工智能把握知识体系、探索知识间的关系、推理科学问题中的相关可能性,以及拓展或聚焦知识和词汇、分析事物之间的关系等提供了更加有效的途径。人工智能在信息处理领域的发展应当与知识组织密切配合,充分发挥知识组织的潜在智能力。

【Abstract】 [Purpose/significance]By analyzing the system and rules of traditional knowledge organization methods, the intelligent capabilities of traditional knowledge organization methods are refined and integrated into artificial intelligence(AI)technology, to enhance the precision and efficiency of AI in information processing. [Method/process]This paper reviews the development of knowledge organization and analyses the inherit structure and mechanisms of traditional knowledge organization methods. [Result/conclusion]Research suggests that over centuries of development and evolution, knowledge organization has gained the ability to reflect knowledge systems and disciplinary systems across different disciplines from diverse perspectives, establish semantic relations from diverse knowledge associations, and associate and integrate knowledge of different forms, types, and structures using scientific knowledge organization methods. These capabilities provide more effective ways for artificial intelligence to grasp knowledge systems, explore knowledge relations, reason about association probabilities in scientific problems, expand or refine knowledge and terms, as well as analyze relationships between things. The development of artificial intelligence in the field of information processing should be closely coordinated with knowledge organizations, to fully unleash its potential intelligent capabilities.

【基金】 2020年度国家社科基金重点项目“大数据环境下领域知识加工与组织模式研究”(编号:20ATQ006)
  • 【文献出处】 科技情报研究 ,Scientific Information Research , 编辑部邮箱 ,2024年01期
  • 【分类号】G254
  • 【下载频次】73
节点文献中: