节点文献
仿生表面沸腾传热性能LBM数值模拟研究
Numerical Simulation on Boiling Heat Transfer Performance of Bionic Surface by LBM
【摘要】 沸腾传热是高效的传热方式之一,在能源、化工、电子元器件热管理等众多领域有着广泛的应用。本文应用格子玻尔兹曼方法研究仿生表面上的沸腾传热过程,探究不同表面温度和润湿性对池沸腾过程的影响。结果表明,亲水性表面上的汽泡更容易脱离表面,但是疏水性表面沸腾起始点较早。通过将亲水和疏水性相结合形成仿生混合润湿性表面可有效提升换热性能,同时调控疏水区域间的间距可以实现高效的换热性能以及汽泡的定向生长。
【Abstract】 Boiling heat transfer is one of the efficient heat transfer methods, which is frequently employed in multifarious industries, including the chemical engineering, energy, and thermal management of electronic components. The Lattice Boltzmann Method was applied to study the boiling heat transfer process on bionic surface, and the influence of different surface temperature and wettability on the pool boiling was investigated. The results show that the bubble on the hydrophilic surface is more likely to break away from the surface, but the onset of nucleate boiling on the hydrophobic surface is earlier. By combining hydrophilicity and hydrophobicity to form a bionic hybrid wettability surface, the heat transfer characteristic can be effectively improved. Meanwhile, regulating the spacing between hydrophobic regions can achieve efficient heat transfer performance and directional growth of bubbles.
【Key words】 bionic surface; wetting characteristics; boiling heat transfer; Lattice Boltzmann Method;
- 【文献出处】 工程热物理学报 ,Journal of Engineering Thermophysics , 编辑部邮箱 ,2024年02期
- 【分类号】TK124
- 【下载频次】66