节点文献
基于宽度学习的太赫兹光谱图像小麦霉变识别研究
Identification of wheat mold using terahertz images based on Broad Learning System
【摘要】 小麦质量安全是粮食安全的重要组成部分。传统的小麦霉变籽粒识别检测方法需要复杂的处理步骤,耗时较长且特征提取能力较差,易造成图像有效信息的丢失,导致小麦霉变籽粒识别检测效果不佳。为解决上述问题,提出了一种基于去噪宽度学习(D-BLS)的霉变小麦太赫兹光谱图像识别方法。该方法对传统宽度学习(BLS)算法进行了改进,通过引入去噪卷积神经网络(DnCNN)模块,构建D-BLS霉变小麦分类识别模型,以增强图像质量,提高霉变小麦太赫兹光谱图像的识别精度。初步研究表明, D-BLS在识别准确率方面优于传统BLS算法,识别准确率达到93.13%。进一步使用支持向量机(SVM)、后向传播神经网络(BPNN)、卷积神经网络(CNN)与D-BLS进行建模对比。研究结果表明, D-BLS网络的分类准确率分别比SVM、BPNN和CNN高出了13.83%、7.79%和3.96%。因此, DBLS能够为小麦发霉早期鉴别提供一种新方法。
【Abstract】 The quality and safety of wheat is an important part of food safety. The traditional identification and detection method of moldy wheat seed requires complex processing steps, which is time-consuming and has poor feature extraction capability, and is prone to the loss of effective image information, resulting in poor wheat moldy seed identification detection. To solve the above problems, a terahertz spectral image recognition method for moldy wheat based on denoising convolutional neural network-broad learning system(D-BLS) is proposed in this paper. The method improves the traditional broad learning system(BLS) algorithm and constructs a D-BLS moldy wheat classification and recognition model by introducing a denoising convolutional neural network(DnCNN) denoising network to enhance image quality and improve the recognition accuracy of moldy wheat terahertz spectral images.The results show that D-BLS outperforms the traditional BLS algorithm in terms of recognition accuracy,with a recognition accuracy of 93.13%. Fruthermore, support vector machine(SVM), back propagation neural network(BPNN), convolutional neural network(CNN) are used for modeling to compare with DBLS. The experimental results show that the classification accuracy of the D-BLS network is 13.83%,7.79% and 3.96% higher than that of SVM, BPNN and CNN, respectively. Therefore, it is believed that the proposed D-BLS algorithm can provide a new effective method for early identification of wheat mold.
【Key words】 spectroscopy; terahertz; broad learning system; mildewed wheat; image processing;
- 【文献出处】 量子电子学报 ,Chinese Journal of Quantum Electronics , 编辑部邮箱 ,2023年03期
- 【分类号】TS210.7;O441.4;TP391.41
- 【下载频次】59