节点文献

基于人工智能的电针仪治疗膝骨关节炎的最优方案研究

Optimal Scheme of Electroacupuncture Instrument for the Treatment of Knee Osteoarthritis Based on Artificial Intelligence

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵祎李正豪武衡陈书旺

【Author】 ZHAOYi;LI Zhenghao;WU Heng;

【通讯作者】 陈书旺;

【机构】 河北科技大学信息科学与工程学院

【摘要】 该文目的是通过使用人工智能Apriori算法找到电针仪治疗膝骨关节炎的最为合适的治疗方案。对于电针仪对膝骨关节炎的治疗效果分析,分析不同病症的关节炎的治疗处方,选取较为常用的6个中医针灸治疗膝骨关节炎的处方穴位,利用现有电针仪对膝骨关节炎进行电针刺激,通过选择不同的刺激频率和强度参数。对志愿者进行电针治疗测试,实时记录和收集志愿者反馈的主观感受和意见。招募20名志愿者,男女生各10人,区分性别使用Apriori算法整理数据,对比分析,从而得到更准确的实验结果。通过分析不同穴位对于不同强度、频率的电针刺激得到的感受数据,以及不同类的人群对于电针刺激不同强度、频率下的反馈数据,从而得到治疗膝骨关节炎的最佳方案。该研究使用人工智能Apriori算法,挖掘出实验数据之间的联系,该算法作为辅助数据整理工具,使得数据整理与对比变得可视化,查询数据消耗时间短,有力节约研究成本。

【Abstract】 This paper is to find the most suitable treatment scheme of electroacupuncture instrument for knee osteoarthritis by using artificial intelligence Apriori algorithm. For the analysis of the therapeutic effect of electro-acupuncture instrument on knee osteoarthritis, the treatment prescriptions for arthritis of different diseases were analyzed, and six commonly used acupoints of traditional Chinese medicine acupuncture for the treatment of knee osteoarthritis were selected. The existing electroacupuncture apparatus was used to stimulate knee osteoarthritis by selecting different stimulation frequency and intensity parameters. The volunteers were tested with electroacupuncture therapy, and the subjective feelings and opinions of the volunteers were recorded and collected in real time. We recruited 20 volunteers, 10 boys and 10 girls, used Apriori algorithm to sort out the data,compared and analyzed these, so as to get more accurate experimental results. Through the analysis of the perception data of different acupoints for electroacupuncture stimulation of different intensity and frequency, as well as the feedback data of different types of people for electroacupuncture stimulation of different intensity and frequency, the best scheme for the treatment of knee osteoarthritis was obtained. This study uses the artificial intelligence Apriori algorithm to mine the relationship between the experimental data. As an auxiliary data finishing tool, the algorithm makes the data collation and comparison become visual, and the query data takes a short time to effectively save the research cost.

【基金】 省级创新训练项目(S202110082032)
  • 【文献出处】 科技创新与应用 ,Technology Innovation and Application , 编辑部邮箱 ,2023年06期
  • 【分类号】R246.9
  • 【下载频次】53
节点文献中: