【作者】
安丰鹏;
A.B.Balantekin;
M.Bishai;
S.Blyth;
曹国富;
曹俊;
常劲帆;
张昀;
陈和生;
陈少敏;
陈羽;
陈义学;
程捷;
成兆侃;
J.J.Cherwinka;
朱明中;
J.P.Cummings;
O.Dalager;
邓凡水;
丁雅韵;
M.V.Diwan;
T.Dohnal;
D.Dolzhikov;
J.Dove;
M.Dvo?ák;
D.A.Dwyer;
J.P.Gallo;
M.Gonchar;
龚光华;
宫辉;
M.Grassi;
顾文强;
郭竞渊;
郭磊;
郭新恒;
郭宇航;
郭子溢;
R.W.Hackenburg;
S.Hans;
何苗;
K.M.Heeger;
衡月昆;
贺远强;
熊怡;
胡貝楨;
胡健润;
胡涛;
胡焯钧;
黄翰雄;
黄金浩;
黄性涛;
黄永波;
P.Huber;
D.E.Jaffe;
任國綸;
季筱璐;
季向盼;
R.A.Johnson;
D.Jones;
康丽;
S.H.Kettell;
S.Kohn;
M.Kramer;
T.J.Langford;
J.Lee18;
李曉菁;
雷瑞霆;
R.Leitner;
梁干庄;
李飞;
李慧玲;
李进京;
李秋菊;
李茹慧;
黎山峰;
S.C.Li;
李卫东;
李小男;
李学潜;
李玉峰;
李志兵;
梁昊;
林政儒;
林贵林;
林盛鑫;
凌家杰;
J.M.Link;
L.Littenberg;
B.R.Littlejohn;
刘金昌;
刘江来;
刘佳熙;
陆昌国;
路浩奇;
陆锦标;
马帮争;
马续波;
马骁妍;
马宇倩;
R.C.Mandujano;
C.Marshall;
K.T.Mc Donald;
R.D.Mc Keown;
孟月;
J.Napolitano;
D.Naumov;
E.Naumova;
T.M.T.Nguyen;
J.P.Ochoa-Ricoux;
A.Olshevskiy;
潘孝儒;
J.Park;
S.Patton;
彭仁杰;
潘振声;
齐法制;
祁鸣;
钱鑫;
N.Raper;
任杰;
C.Morales Reveco;
R.Rosero;
B.Roskovec;
阮锡超;
H.Steiner;
孙吉良;
T.Tmej;
K.Treskov;
謝雲皓;
C.E.Tull;
B.Viren;
V.Vorobel;
王正祥;
王俊;
王萌;
王乃彦;
王瑞光;
王为;
王维;
王玺;
王玉漫;
王贻芳;
王铮;
王喆;
王志民;
魏瀚宇;
韦良红;
温良剑;
K.Whisnant;
C.G.White;
黄显诺;
E.Worcester;
吴帝儒;
武方亮;
吴群;
吴文杰;
夏冬梅;
谢章权;
邢志忠;
许杭锟;
徐吉磊;
徐彤;
薛涛;
杨长根;
杨雷;
杨玉梓;
姚海峰;
叶梅;
叶铭芳;
杨炳麟;
余泓钊;
于泽源;
岳保彪;
V.Zavadskyi;
曾珊;
曾裕达;
占亮;
张超;
张飞洋;
张宏浩;
张家文;
张清民;
张石其;
张玄同;
张玉美;
张一心;
张园园;
张志坚;
张子平;
张智勇;
赵洁;
赵润泽;
周莉;
庄红林;
邹佳恒;
【Author】
F.P.An;A.B.Balantekin;M.Bishai;S.Blyth;G.F.Cao;J.Cao;J.F.Chang;Y.Chang;H.S.Chen;S.M.Chen;Y.Chen;Y.X.Chen;J.Cheng;Z.K.Cheng;J.J.Cherwinka;M.C.Chu;J.P.Cummings;O.Dalager;F.S.Deng;Y.Y.Ding;M.V.Diwan;T.Dohnal;D.Dolzhikov;J.Dove;M.Dvo?ák;D.A.Dwyer;J.P.Gallo;M.Gonchar;G.H.Gong;H.Gong;M.Grassi;W.Q.Gu;J.Y.Guo;L.Guo;X.H.Guo;Y.H.Guo;Z.Guo;R.W.Hackenburg;S.Hans;M.He;K.M.Heeger;Y.K.Heng;Y.K.Hor;Y.B.Hsiung;B.Z.Hu;J.R.Hu;T.Hu;Z.J.Hu;H.X.Huang;J.H.Huang;X.T.Huang;Y.B.Huang;P.Huber;D.E.Jaffe;K.L.Jen;X.L.Ji;X.P.Ji;R.A.Johnson;D.Jones;L.Kang;S.H.Kettell;S.Kohn;M.Kramer;T.J.Langford;J.Lee;J.H.C.Lee;R.T.Lei;R.Leitner;J.K.C.Leung;F.Li;H.L.Li;J.J.Li;Q.J.Li;R.H.Li;S.Li;S.C.Li;W.D.Li;X.N.Li;X.Q.Li;Y.F.Li;Z.B.Li;H.Liang;C.J.Lin;G.L.Lin;S.Lin;J.J.Ling;J.M.Link;L.Littenberg;B.R.Littlejohn;J.C.Liu;J.L.Liu;J.X.Liu;C.Lu;H.Q.Lu;K.B.Luk;B.Z.Ma;X.B.Ma;X.Y.Ma;Y.Q.Ma;R.C.Mandujano;C.Marshall;K.T.Mc Donald;R.D.Mc Keown;Y.Meng;J.Napolitano;D.Naumov;E.Naumova;T.M.T.Nguyen;J.P.Ochoa-Ricoux;A.Olshevskiy;H.-R.Pan;J.Park;S.Patton;J.C.Peng;C.S.J.Pun;F.Z.Qi;M.Qi;X.Qian;N.Raper;J.Ren;C.Morales Reveco;R.Rosero;B.Roskovec;X.C.Ruan;H.Steiner;J.L.Sun;T.Tmej;K.Treskov;W.-H.Tse;C.E.Tull;B.Viren;V.Vorobel;C.H.Wang;J.Wang;M.Wang;N.Y.Wang;R.G.Wang;W.Wang;W.Wang;X.Wang;Y.Wang;Y.F.Wang;Z.Wang;Z.Wang;Z.M.Wang;H.Y.Wei;L.H.Wei;L.J.Wen;K.Whisnant;C.G.White;H.L.H.Wong;E.Worcester;D.R.Wu;F.L.Wu;Q.Wu;W.J.Wu;D.M.Xia;Z.Q.Xie;Z.Z.Xing;H.K.Xu;J.L.Xu;T.Xu;T.Xue;C.G.Yang;L.Yang;Y.Z.Yang;H.F.Yao;M.Ye;M.Yeh;B.L.Young;H.Z.Yu;Z.Y.Yu;B.B.Yue;V.Zavadskyi;S.Zeng;Y.Zeng;L.Zhan;C.Zhang;F.Y.Zhang;H.H.Zhang;J.W.Zhang;Q.M.Zhang;S.Q.Zhang;X.T.Zhang;Y.M.Zhang;Y.X.Zhang;Y.Y.Zhang;Z.J.Zhang;Z.P.Zhang;Z.Y.Zhang;J.Zhao;R.Z.Zhao;L.Zhou;H.L.Zhuang;J.H.Zou;Institute of Modern Physics, East China University of Science and Technology;University of Wisconsin;Brookhaven National Laboratory;Department of Physics, Nnational Taiwan University;Institute of High Energy Physics;National United University;Department of Engineering Physics, Tsinghua University;Shenzhen University;Sun Yat-Sen (Zhongshan) University;North China Electric Power University;Chinese University of Hong Kong;Siena College;Department of Physics and Astronomy, University of California;University of Science and Technology of China;Charles University, Faculty of Mathematics and Physics;Joint Institute for Nuclear Research;Department of Physics, University of Illinois at Urbana-Champaign;Lawrence Berkeley National Laboratory;Department of Physics, Illinois Institute of Technology;Beijing Normal University;Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi’an Jiaotong University;Department of Chemistry and Chemical Technology, Bronx Community College;Wright Laboratory and Department of Physics, Yale University;China Institute of Atomic Energy;Shandong University;Guangxi University;Center for Neutrino Physics, Virginia Tech;Institute of Physics, NCTU;Department of Physics, University of Cincinnati;Department of Physics, College of Science and Technology, Temple University;Dongguan University of Technology;Department of Physics, University of California;Department of Physics, The University of Hong Kong;School of Physics, Nankai University;Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology;Joseph Henry Laboratories, Princeton University;California Institute of Technology;College of William and Mary;Nanjing University;China General Nuclear Power Group;College of Electronic Science and Engineering, National University of Defense Technology;Iowa State University;Chongqing University;
【机构】
Institute of Modern Physics, East China University of Science and Technology;
University of Wisconsin;
Brookhaven National Laboratory;
Department of Physics, Nnational Taiwan University;
Institute of High Energy Physics;
National United University;
Department of Engineering Physics, Tsinghua University;
Shenzhen University;
Sun Yat-Sen (Zhongshan) University;
North China Electric Power University;
Chinese University of Hong Kong;
Siena College;
Department of Physics and Astronomy, University of California;
University of Science and Technology of China;
Charles University, Faculty of Mathematics and Physics;
Joint Institute for Nuclear Research;
Department of Physics, University of Illinois at Urbana-Champaign;
Lawrence Berkeley National Laboratory;
Department of Physics, Illinois Institute of Technology;
Beijing Normal University;
Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi’an Jiaotong University;
Department of Chemistry and Chemical Technology, Bronx Community College;
Wright Laboratory and Department of Physics, Yale University;
China Institute of Atomic Energy;
Shandong University;
Guangxi University;
Center for Neutrino Physics, Virginia Tech;
Institute of Physics, NCTU;
Department of Physics, University of Cincinnati;
Department of Physics, College of Science and Technology, Temple University;
Dongguan University of Technology;
Department of Physics, University of California;
Department of Physics, The University of Hong Kong;
School of Physics, Nankai University;
Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology;
Joseph Henry Laboratories, Princeton University;
California Institute of Technology;
College of William and Mary;
Nanjing University;
China General Nuclear Power Group;
College of Electronic Science and Engineering, National University of Defense Technology;
Iowa State University;
Chongqing University;
【摘要】 The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Day a Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Day a Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2% precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.更多还原
【Abstract】 The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Day a Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Day a Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2% precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.更多还原
【基金】 Supported in part by the Ministry of Science and Technology of China;the U.S. Department of Energy;the Chinese Academy of Sciences;the CAS Center for Excellence in Particle Physics;the National Natural Science Foundation of China;the Guangdong provincial government;the Shenzhen municipal government;the China General Nuclear Power Group;the Research Grants Council of the Hong Kong Special Administrative Region of China;the Ministry of Education in TW;the U.S. National Science Foundation;the Ministry of Education,Youth,and Sports of the Czech Republic;the Charles University Research Centre UNCE;the Joint Institute of Nuclear Research in Dubna,Russia;the National Commission of Scientific and Technological Research of Chile