节点文献
Large Dynamical Axion Field in Topological Antiferromagnetic Insulator Mn2Bi2Te5
【摘要】 The dynamical axion field is a new state of quantum matter where the magnetoelectric response couples strongly to its low-energy magnetic fluctuations.It is fundamentally different from an axion insulator with a static quantized magnetoelectric response.The dynamical axion field exhibits many exotic phenomena such as axionic polariton and axion instability.However,these effects have not been experimentally confirmed due to the lack of proper topological magnetic materials.Combining analytic models and first-principles calculations,here we predict a series of van der Waals layered Mn2Bi2Te5-related topological antiferromagnetic materials that could host the long-sought dynamical axion field with a topological origin.We also show that a large dynamical axion field can be achieved in antiferromagnetic insulating states close to the topological phase transition.We further propose the optical and transport experiments to detect such a dynamical axion field.Our results could directly aid and facilitate the search for topological-origin large dynamical axion field in realistic materials.
【Abstract】 The dynamical axion field is a new state of quantum matter where the magnetoelectric response couples strongly to its low-energy magnetic fluctuations.It is fundamentally different from an axion insulator with a static quantized magnetoelectric response.The dynamical axion field exhibits many exotic phenomena such as axionic polariton and axion instability.However,these effects have not been experimentally confirmed due to the lack of proper topological magnetic materials.Combining analytic models and first-principles calculations,here we predict a series of van der Waals layered Mn2Bi2Te5-related topological antiferromagnetic materials that could host the long-sought dynamical axion field with a topological origin.We also show that a large dynamical axion field can be achieved in antiferromagnetic insulating states close to the topological phase transition.We further propose the optical and transport experiments to detect such a dynamical axion field.Our results could directly aid and facilitate the search for topological-origin large dynamical axion field in realistic materials.
- 【文献出处】 Chinese Physics Letters ,中国物理快报(英文版) , 编辑部邮箱 ,2020年07期
- 【分类号】O469
- 【被引频次】1
- 【下载频次】11