节点文献

基于残差网络的海洋温跃层分析方法

Analytical Method of Oceanic Thermocline Based on Residual Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 初晓孟祥鹤哲张凯胡成全

【Author】 CHU Xiao;MENG Xianghezhe;ZHANG Kai;HU Chengquan;College of Information Engineering, Changchun University of Finances and Economics;College of Computer Science and Technology, Jilin University;

【机构】 长春财经学院信息工程学院吉林大学计算机科学与技术学院

【摘要】 首先,以世界海洋地图集2013(WOA13)海洋数据为实验数据,提出将不等距微分法、垂直梯度法应用于海洋数据预处理、海洋区域划分和跃层分析中,并通过对多种神经网络在基于WOA13海洋三维数据二分类实验的性能分析,选取残差网络作为二分类实验的网络模型,在三层残差网络模型基础上增加了Dropout保留层以防止过拟合.其次,将残差网络模型用于温跃层分析判定,并针对改进模型进行超参数优化、残差单元改进、保留率调整等对比实验.实验结果表明,改进的ResNet-26网络对WOA13海洋区域数据的温跃层数据分类有效,分类准确率超过94%.

【Abstract】 Firstly, we selected the world ocean atlas 2013(WOA13) ocean data as the experimental data, the unequal distance differential method and vertical gradient method were applied to the preprocessing of ocean data, the division of ocean area and analysis of thermocline. Through the performance analysis of various neural networks based on the three-dimensional WOA13 ocean data in the binary classification experiment, we chose the residual network as the network model of the binary classification experiment, and added the Dropout retention layer on the basis of the three-layer residual network model to prevent over-fitting. Secondly, the residual network model was used for thermocline analysis and determination, and the comparative tests such as the super parameters optimization, the residual unit improvement and the retention rate adjustment were carried out for the improved model. The experimental results show that the improved ResNet-26 network is effective for the thermocline data classification of WOA13 ocean area data, and the classification accuracy is more than 94%.

【基金】 国家自然科学基金(批准号:51679105);吉林省高等教育课题项目(批准号:201804)
  • 【文献出处】 吉林大学学报(理学版) ,Journal of Jilin University(Science Edition) , 编辑部邮箱 ,2020年04期
  • 【分类号】TP183;P731.11
  • 【下载频次】267
节点文献中: