节点文献
基于支持向量机的钛合金铣削加工参数优化
Parameters Optimization of Titanium Alloy Milling Process Based on Support Vector Machine
【摘要】 针对钛合金材料在加工过程中受铣削力影响易于产生变形而影响加工效果,属难加工材料,为了保证加工质量,提高生产效率及降低加工成本,其切削加工参数的合理选择非常关键;对钛合金铣削加工进行有限元数值计算,结合试验设计方法构建了基于支持向量机的切削力预测模型,提出了一种基于支持向量机和遗传算法的优化方法,对钛合金铣削工艺参数进行了优化;结果表明,该方法准确、高效、可行,为钛合金加工工艺参数优化提供一种新的思路,具有良好的推广价值。
【Abstract】 Titanium alloys are w idely used in various fields,the processing quality of this materials w ill be affected by the milling force. In order to guarantee the machining quality,improve production efficiency and reduce cost,the cutting parameters of the titanium alloy are reasonable selected,w hich plays an important role. In this paper,the Titanium Alloy milling process is analyzed by finite element method,a milling force prediction model w as established based on Support Vector M achine( SVM),The design methodology based on( SVM) and genetic optimization( GA) is proposed for Titanium Alloy milling process parameters. The results show that this methodology is feasible and highly effective,and thus can be used in the machining process parameters optimum and other material processing fields.
【Key words】 titanium alloy; orthogonal experiment; SVM; genetic algorithm;
- 【文献出处】 组合机床与自动化加工技术 ,Modular Machine Tool & Automatic Manufacturing Technique , 编辑部邮箱 ,2017年10期
- 【分类号】TG54
- 【被引频次】6
- 【下载频次】164