节点文献
基于TB-PC算法的MISO系统辨识的研究
Research on MISO System Identification Based on TB-PC Algorithm
【摘要】 如何保持MISO系统辨识的精确度、收敛度、耗时以及跳出局部最优解,是当今研究的热点和难点。提出了一种基于协同进化策略和禁忌搜索的蝙蝠和粒子群混合算法(TB-PC),分析蝙蝠算法控制参数,提出了合理的脉冲频度和音强初值,将蝙蝠算法与粒子群算法的优势用协同进化结合起来,并引入了禁忌搜索。通过对四个测试函数和MISO系统实例的辨识仿真,验证了TB-PC算法具有稳定性能好、收敛精度高等优点,对MISO系统有优良的辨识效果。
【Abstract】 How to maintain the accuracy,convergence,time consuming and jump out of the local optimal solution of MISO system identification is a hot and difficult problem in the research. It presented a bat algorithm cooperative with particle swarm optimization based on tabu search strategy( TB-PC),analyzed control parameters,put forward reasonable frequency and initial pulse intensity,combined bat algorithm and particle swarm optimization with co-evolution together and the introduced tabu search. Through the identification and simulation of four test functions and MISO system,the results showed that the TB-PC algorithm has the advantages of good stability,high convergence precision and good identification effect on the MISO system.
【Key words】 TB-PC algorithm; MISO system identification; BA algorithm; PSO algorithm; co-evolution; tabu search;
- 【文献出处】 电气自动化 ,Electrical Automation , 编辑部邮箱 ,2017年04期
- 【分类号】N945.14
- 【下载频次】73