节点文献
基于多项式拟合和GM(1,1)模型在煤矿伤亡事故中的数据预测模型
A Data Prediction Model for Coal Mine Casualties Based on Polynomial Fitting and GM(1,1) Model
【摘要】 通过建立多项式拟合模型找出影响预测结果的异常数据,剔除后建立GM(1,1)模型。对某集团1991年-2003年的伤亡事故统计数据,运用MATLAB工具箱,由图形观测和相对误差分析,提高了模型预测的准确性和适应性,其预测精度大幅提高,预测期望值高于单一的多项式拟合和灰色预测模型。
【Abstract】 Abnormal data affecting prediction results is detected by establishing a polynomial fitting model,and GM( 1,1) model is established after elimination. With respect to the statistic casualties of a group company in the period of 1991- 2003,we use the MATLAB toolbox to make graphical observation and relative error analysis,thus improving the accuracy and adaptability of model prediction. Its prediction expectation is higher than that of a single polynomial fitting or grey prediction model.
【关键词】 煤矿事故;
预测;
多项式拟合GM(1,1);
MATLAB工具箱;
【Key words】 coal mine accident; prediction; polynomial fitting; GM(1,1); MATLAB toolbox;
【Key words】 coal mine accident; prediction; polynomial fitting; GM(1,1); MATLAB toolbox;
【基金】 甘肃省财政厅专项资金立项资助(甘财教【2013】116号)
- 【文献出处】 电气自动化 ,Electrical Automation , 编辑部邮箱 ,2016年01期
- 【分类号】O242.1;N941.5
- 【被引频次】5
- 【下载频次】191