节点文献

Preparation of amorphous nano-boron powder with high activity by combustion synthesis

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 豆志河张延安赫冀成黄杨

【Author】 DOU Zhi-he;ZHANG Ting-an;HE Ji-cheng;HUANG Yang;Key Laboratory for Ecological Metallurgy of Multi-metallic Mineral of Ministry of Education(Northeastern University);

【机构】 Key Laboratory for Ecological Metallurgy of Multi-metallic Mineral of Ministry of Education(Northeastern University)

【摘要】 The preparation process of amorphous nanometer boron powders through combustion synthesis was investigated, and the effects of the reactant ratio, the heating agent and the milling rate on the activity and particle size of amorphous boron powders were studied. The results show that the boron powders exist in the form of an amorphous phase which has the crystallinity lower than 30.4%, and the particle size of boron powder decreases with an increase of the high-energy ball milling rate. The purity of amorphous boron powder is 94.8% and particle sizes are much smaller than 100 nm when the mass ratio of B2O3/Mg/KClO3 is 100:105:17 and the ball milling time is 20 min with the milling rate of 300 r/min. At the same time, the amorphous boron nano-fibers appear in the boron powders.

【Abstract】 The preparation process of amorphous nanometer boron powders through combustion synthesis was investigated, and the effects of the reactant ratio, the heating agent and the milling rate on the activity and particle size of amorphous boron powders were studied. The results show that the boron powders exist in the form of an amorphous phase which has the crystallinity lower than 30.4%, and the particle size of boron powder decreases with an increase of the high-energy ball milling rate. The purity of amorphous boron powder is 94.8% and particle sizes are much smaller than 100 nm when the mass ratio of B2O3/Mg/KClO3 is 100:105:17 and the ball milling time is 20 min with the milling rate of 300 r/min. At the same time, the amorphous boron nano-fibers appear in the boron powders.

【基金】 Project(51002025) supported by the National Natural Science Foundation of China
  • 【文献出处】 Journal of Central South University ,中南大学学报(英文版) , 编辑部邮箱 ,2014年03期
  • 【分类号】TB383.1
  • 【被引频次】4
  • 【下载频次】75
节点文献中: