节点文献
层次分类方法综述
A Survey of Hierarchical Classification Methods
【摘要】 层次分类方法利用类别层次结构来分解问题和组织分类器,可有效解决多类分类问题.依据是否要求类别之间存在显式层次关系,层次分类方法可分为两大类.文中对不要求类别之间存在显式层次关系的层次分类方法进行综述.首先归纳和阐述此类方法所采用的基本框架,然后介绍和分析其中若干关键技术的研究进展,最后从算法和应用两个角度对国内外相关研究进行详细叙述,进而对现有方法进行总结,并给出进一步研究的方向.
【Abstract】 Hierarchical classification( HC),decomposing problem and organizing the classifiers according to the category hierarchy,is an efficient solution for multi-class classification problem. Depending on whether an explicit hierarchical relationship among categories is required,HC methods can be divided into two types. In this paper,the HC methods which do not require explicit hierarchical relationship among categories are reviewed systematically. Firstly,the basic framework of this type of methods is outlined. Then,the research progresses of several key techniques are elaborated and analyzed. Next,the related research work at home and abroad is described in detail from both algorithm and application perspectives. Finally,the existing methods are summarized and several future research directions are pointed out.
【Key words】 Hierarchical Classification; Multi-Class Classification; Category Hierarchy; Feature Fusion; Image Classification;
- 【文献出处】 模式识别与人工智能 ,Pattern Recognition and Artificial Intelligence , 编辑部邮箱 ,2013年12期
- 【分类号】TP391.4
- 【被引频次】48
- 【下载频次】765