节点文献
二维抛物线离散映射的动力学研究
Dynamics of two-dimensional parabolic discrete map
【摘要】 由两个一维抛物线离散映射作推广并非线性耦合,实现了一个新的二维抛物线离散映射.利用不动点稳定性分析和映射分岔分析,研究了所提出的二维离散映射的复杂动力学行为及其吸引子的演变过程,阐述了它所特有的共存分岔模式和快慢周期振荡效应等动力学特性.研究结果表明:二维抛物线离散映射具有动力学特性调节和动态幅度调节的两个功能不同的控制参数,存在Hopf分岔、分岔模式共存、锁频和周期振荡快慢效应等非线性物理现象.并基于微控制器实现的数字电路验证了相应的理论分析和数值仿真结果.
【Abstract】 By extending and nonlinearly coupling two one-dimensional parabolic discrete maps,a new two-dimensional parabolic discrete map is achieved. By using stability analysis of fixed points and bifurcation analysis of map,the complex dynamical behavior and attractor evolution of the proposed two-dimensional discrete map are investigated,and its peculiar dynamical characteristics,such as the coexisting bifurcation modes and fast-slow periodic oscillation effects,etc. ,are illustrated. The research results indicate that two-dimensional parabola discrete map has two control parameters with different functions of adjustable dynamical behaviors and adjustable dynamic amplitudes,and there emerge nonlinear physical phenomena of Hopf bifurcation,bifurcation mode coexisting,locked-frequency and periodic oscillation fast-slow effect. Furthermore,the corresponding theoretical analysis and numerical simulation results are verified based on a digital circuit realized by microcontroller.
【Key words】 two-dimensional discrete map; bifurcation; attractor; parameter;
- 【文献出处】 物理学报 ,Acta Physica Sinica , 编辑部邮箱 ,2011年01期
- 【分类号】O415
- 【被引频次】15
- 【下载频次】200