节点文献
一类二维非局部椭圆问题的有限元方法
A Finite Element Method for Two Dimension Elliptic Problem with Nonlocal Boundary Conditions
【摘要】 针对一类具有非局部边界的二维椭圆问题,利用微分方程的叠加原理,将方程化为带Dirichlet边界的非齐次方程和带积分边界的齐次方程,采用等参双线性有限元方法分别进行离散,得到该问题的有限元解;进一步,对相应有限元解进行误差分析,得到其最优L2模估计,数值实验验证了理论结果的正确性.
【Abstract】 The two dimension elliptic problem with nonlocal boundary conditions is firstly decomposed into two subproblems: nonhomogeneous one with Dirichlet boundary and homogeneous one with nonlocal boundary.The isoparametric bilinear finite element method is applied for the two subproblems above,and the corresponding finite element solutions are obtained.Furthermore,the optimal error estimates in the norm L2 are derived.Finally,Numerical experiment verifies the theoretical results.
【关键词】 非局部边界;
椭圆问题;
等参双线性有限元;
误差估计;
【Key words】 nonlocal boundary conditions; elliptic problem; the isoparametric bilinear finite element; error estimates;
【Key words】 nonlocal boundary conditions; elliptic problem; the isoparametric bilinear finite element; error estimates;
【基金】 国家自然科学基金项目(10771178);国家自然科学基金项目(11031006);湖南省科技厅一般项目(2009FJ3042);湖南省高校科技创新团队支持计划资助
- 【文献出处】 湘潭大学自然科学学报 ,Natural Science Journal of Xiangtan University , 编辑部邮箱 ,2010年03期
- 【分类号】O241.82
- 【被引频次】1
- 【下载频次】55