节点文献

混沌背景下微弱信号时域参数检测的研究

Time-Domain Parameter Detection of Weak Signals in the Chaotic Background

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李小玲袁继敏银星古天祥

【Author】 LI Xiao-ling1, YUAN Ji-min3, YIN Xing2 , and GU Tian-xiang3 (1. College of Information and Electrical Engineering, Panzhihua University Panzhihua Sichuan; 2. College of Computer, Panzhihua University Panzhihua Sichuan 617000; 3. School of Automation Engineering, University of Electronic Science and Technology of China Chengdu 610054)

【机构】 攀枝花学院电信学院电子科技大学自动化学院攀枝花学院计算机学院

【摘要】 数字示波器不能测量混沌背景中的微弱信号,该文结合混沌和神经网络构建检测模型实现该功能。运用混沌时间序列的相空间重构理论计算嵌入维数作为神经网络的输入维来构建网络模型,并采用单步预测方法,在混沌状态下直接测量混沌背景中微弱信号,获取微弱信号的波形。该方法能够测量微弱信号的时域参数,测量范围宽,逼近目标精度高,计算量小。实验结果证明了该方法具有很强的实用性。

【Abstract】 Digital oscilloscope can not measure week singal in chaotic background. A method using Elman neural network is described to achieve signal parameter detection in chaotic background. With the phase space reconstruction theory on time series, the embedded dimension is calculated and used as the in-put dimension of a neural network considered. By adopting the single-step prediction method, the weak signals are detected directly and their waveforms can be gained as well in the chaotic state. Result shows that the method studied in this paper is superior to the existing detection principles. Its feasibility and practicability have been proved by the experiments.

【基金】 国家自然科学基金(60772145)
  • 【文献出处】 电子科技大学学报 ,Journal of University of Electronic Science and Technology of China , 编辑部邮箱 ,2009年04期
  • 【分类号】TM935.37
  • 【被引频次】9
  • 【下载频次】205
节点文献中: