节点文献

基于一类非线性Lagrange函数的对偶问题

Dual problems based on a class of nonlinear Lagrange functions

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 任咏红肖现涛金丽张立卫

【Author】 REN Yong-hong1,2,XIAO Xian-tao1,JIN Li3,ZHANG Li-wei11.Department of Applied Mathematics,Dalian University of Technology,Dalian 116024,China;2.School of Mathematics,Liaoning Normal University,Dalian 116029,China;3.School of Mathematics,Physics and Information Science,Zhejiang Ocean University,Zhoushan 316004,China

【机构】 大连理工大学应用数学系浙江海洋学院数理与信息学院

【摘要】 基于一类非线性Lagrange函数提出不等式约束优化问题的一类对偶问题,证明了在Jacobian惟一条件下,对偶问题的最优解处二阶充分性条件是成立的,因此对偶解处满足二阶增长条件.非线性Lagrange函数的鞍点存在是原始问题与对偶问题无对偶间隙的充分条件,给出了鞍点条件的等价条件,并且给出了用扰动函数来刻画的鞍点存在的一个充分条件.

【Abstract】 Dual problems based on a class of nonlinear Lagrange functions for inequality constrained optimization problems are proposed.Under the Jacobian uniqueness conditions,the second order sufficient conditions for the dual problem are demonstrated so that the quadratic growth condition holds at the solution.The equivalence conditions for the existence of saddle points are given,which are sufficient for zero duality gap between the primal problem and the dual problem.Moreover,a sufficient condition for the existence of saddle points is presented,which is characterized by the perturbation function.

【基金】 国家自然科学基金资助项目(10771026)
  • 【文献出处】 大连理工大学学报 ,Journal of Dalian University of Technology , 编辑部邮箱 ,2008年04期
  • 【分类号】O221.2
  • 【被引频次】4
  • 【下载频次】222
节点文献中: