节点文献

基于人工神经网络的固相质量流量软测量研究

The Soft Sensor Model for Mass Flow Rate Measurement of Pneumatically Conveyed Solids Based on the Artificial Neural Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 许传龙赵延军黄健孔明汤光华王式民

【Author】 XU Chuan-long~1,ZHAO Yan-jun~2,HUANG Jian~1,KONG Ming~1,TANG Guang-hua~1,WANG Shi-min~1(1.Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry ofEducation,Southeast University,Nanjing,Jiangsu 210096,China;2.College of Computer and Automatic Control,Hebei Polytechnic University,Tangshan,Hebei 063009,China)

【机构】 东南大学洁净煤发电与燃烧技术教育部重点实验室河北理工大学计算机与控制学院东南大学洁净煤发电与燃烧技术教育部重点实验室 江苏南京210096河北唐山063009江苏南京210096

【摘要】 采用弯管法测量稀相气固两相流中固相质量流量时,固相流量与其影响因素(压差、流量系数、气固混合密度等)之间存在着复杂的非线性关系,给粉体的精确测量带来困难。利用人工神经网络优良的非线性映射能力,建立了一个基于BP网络固相质量流量软测量模型,并以实验数据为样本对网络进行训练,实现对固相质量流量的在线估计,与实验结果吻合较好,为稀相气力输送中固相质量流量在线测量提供了一种简单、可靠的新方法。

【Abstract】 It is very difficult for the elbow method to accurately measure the mass flow rate of pneumatically conveyed solids due to the complex nonlinear relation between solid mass flow rate and its effects such as differential pressure, flow coefficient and bulk density,etc.Based on better nonlinear approximation capability of artificial neural network,a soft sensor model is introduced to realize the above nonlinear relation and to provide a solution to on-line measurement of pneumatically conveyed solids.Experimental results obtained on a pilot gas-solid conveyor showed a good agreement with those of soft sensor,which proves the validity and reliability of the soft sensor.

【基金】 国家重点基础研究专项(2004CB17702-04)
  • 【文献出处】 计量学报 ,Acta Metrologica Sinica , 编辑部邮箱 ,2006年03期
  • 【分类号】TH814
  • 【被引频次】28
  • 【下载频次】280
节点文献中: