节点文献
非Sasakian切触度量(k,μ)空间中子流形
Submanifolds of a non-Sasakian contact metric (k,μ)-space
【摘要】 特征矢量场满足一(k,μ)零分布条件的切触度量流形称为切触度量(k,μ)空间.考察非Sasakian切触度量(k,μ)空间中子流形,证明了它的每个子流形必是切触CR子流形.同时还研究了其切触全脐子流形,证明了它的每个切触全脐超曲面是具有3个不同常主曲率的极小浸入.
【Abstract】 A contact metric manifold whose characteristic vector field belongs to a(k,μ)-nullity distribution is called a contact metric(k,μ)-space.Submanifolds of a non-Sasakian(k,μ)-space are investigated and it is shown that each submanifold in a non-Sasakian(k,μ)-space must be a contact CR submanifold.At the same time,totally contact umbilical submanifolds are also studied and especially,every totally contact umbillical hypersurface in a non-Sasakian(k,μ)-space is proved to be a minimal immersion with three distinct constant principal curvatures.
【关键词】 切触度量空间;
CR子流形;
Sasakian空间;
全脐;
【Key words】 contact metric space; CR manifolds; Sasakian space; totally umbilical;
【Key words】 contact metric space; CR manifolds; Sasakian space; totally umbilical;
【基金】 国家自然科学基金(10501011);数学天元青年基金(A0324608)资助项目
- 【文献出处】 湖北大学学报(自然科学版) ,Journal of Hubei University(Natural Science) , 编辑部邮箱 ,2006年03期
- 【分类号】O186.16
- 【下载频次】29