节点文献
函数zexp(z+a+πi)的动力学
Dynamics of the function z exp(z+a+πi)
【摘要】 研究函数fa(z)=zexp(z+a+πi)的动力学,证明了下列结果:当a<0时,Fatou集F(fa)是一个完全不变吸引域;存在an>0,使得fan具有2n阶超吸引域,而当a>an时,fa没有2n阶超吸引域;an单调增加趋于无穷大;集合B0={aRJ(fa)=C}是一个无界集.
【Abstract】 In this paper,dynamics of the function fa(z)=zexp(z+a+πi) is studied.The following results have been proved.The Fatou set f(fa) is a completely invariant absorbing domain for a<0.There exists an>0 such that fa<sub>n has super absorbing domains of 2n-order,but fa has no super absorbing domains of 2n-order for a>an.Furthermore,an is monotone increasing toward infinity.The set B0={aRJ(fa)=C} is unbounded.
【关键词】 Julia集;
Fatou集;
完全不变吸引域;
n阶超吸引域;
【Key words】 Julia set; Fatou set; completely invariant absorbing domain; super absorbing domain of n-order;
【Key words】 Julia set; Fatou set; completely invariant absorbing domain; super absorbing domain of n-order;
- 【文献出处】 广州大学学报(自然科学版) ,Journal of Guangzhou University(Natural Science Edition) , 编辑部邮箱 ,2006年06期
- 【分类号】O156
- 【下载频次】15