节点文献
Kohonen网络与BP网络用于钨和钼的同时测定
Application of Kohonen and BP Neural Networks to Simultaneous Determination of Tungsten and Molybdenum
【摘要】 Kohonen与BP人工神经网络结合用于解析钨和钼的吸收光谱,讨论了Kohonen网络输出层的拓扑结构,并利用确定的结构对钨和钼的重叠光谱进行波长选择,在全光谱中选择最能代表光谱特征的不同类波长。所选波长处的吸光度作为三层BP-ANN网络的输入集,分光光度法同时测定了钨和钼。利用Koho-nen网络选择全谱特征波长,优化了BP-ANN的输入层。与常规的波长选择方法进行比较,分析结果表明,经K-ANN方法进行波长选择后,提高了BP-ANN的预测能力。确立了Kohonen网络作为选择最优波长集的一种工具。
【Abstract】 BP artificial neural networks combined with Kohonen networks were used for the simultaneous determination of tungsten and molybdenum by spectrophotometry.First,the topology structure of Kohonen artificial neural networks was studied,and applied to the wavelength selection of the overlapped spectra of tungsten and molybdenum.Then the most informative wavelengths were selected from the full spectra,and absorbance values were used as the optimal input sets of the three-layer BP neural networks.Compared with the routine method of wavelength selection,the results prove that using Kohonen networks to select the most informative wavelengths can optimize the input layer of BP-ANN,and the prediction ability of BP-ANN is improved.So Kohonen networks can be used as a tool for wavelength selection.
【Key words】 Artificial neural network; Chemometrics; Spectrophotometry; Tungsten; Molybdenum;
- 【文献出处】 光谱学与光谱分析 ,Spectroscopy and Spectral Analysis , 编辑部邮箱 ,2006年12期
- 【分类号】O657.3;O614
- 【被引频次】3
- 【下载频次】100