节点文献
求解非线性动力系统周期解大范围收敛方法
Global Convergence Methods for Determining Periodic Solution of Nonlinear Dynamic Systems
【摘要】 对于多自由度非线性动力系统,提出一种求解周期解的大范围收敛方法,这种算法对处理非线性动力系统有较强的功能。结合数值延拓算法,为求解具有系统参数的非线性动力系统在整个系统参数范围内的周期解提供了有效的方法。
【Abstract】 The analysis of dynamic system with multiple degrees of freedom usually encounter extreme nonlinearity,which exactly interpret the mechanisms of some phenomena.The fundamental response of a nonlinear nonautonomous system,may bifurcatate from periodic motion as system parameter varies,thus to determine the periodic solution is required in such case.An efficient method to evaluate nonlinear vibration periodic solution is proposed where a global convergence of periodic solutions can be achieved,and Euler-Newton algorithm based on predictor corrector method is used to trace the solution path.The examples confirm efficiency of this continuation algorithm.
【Key words】 nonlinear dynamics; periodic motion; continuation method; bifurcation.;
- 【文献出处】 应用力学学报 ,Chinese Journal of Applied Mechanics , 编辑部邮箱 ,2005年03期
- 【分类号】O302
- 【被引频次】3
- 【下载频次】136