节点文献
一种多目标优化重建方法在气体浓度层析成像中的应用
A multi-object optimization reconstruction technique for gas density computer tomography
【摘要】 为了克服传统的少射线图像重建方法-ART对噪声敏感而导致的重建图像质量差的问题,在考虑气体扩散时其浓度二维分布特点的基础上,提出了一种利用多目标优化的方法来重建气体二维浓度分布图的方法。实验表明,该算法对改善气体浓度层析成像中的噪声对重建结果的影响具有较好的效果。
【Abstract】 As a common image reconstruction algorithm for limited projection data, algebraic reconstruction technique has some disadvantages such as sensitive to the noise and bad reconstructed result for the noise. Considering the characteristics of the distribution of the gas density, a novel image reconstruction method named multi-object optimization image reconstruction was proposed. It is showed that the scheme can reduce the impact of the noise and improve the reconstructed image quality.
【关键词】 图像处理;
图像重建;
差分吸收;
多目标优化;
【Key words】 image processing; image reconstruction; difference absorption; multi-object optimization;
【Key words】 image processing; image reconstruction; difference absorption; multi-object optimization;
【基金】 国家自然科学基金项目(60472015)
- 【文献出处】 量子电子学报 ,Chinese Journal of Quantum Electronics , 编辑部邮箱 ,2005年01期
- 【分类号】TP274
- 【被引频次】4
- 【下载频次】115