节点文献
三维Stokes问题Bernadi-Raugel元的超收敛
Superconvergence of the Bernadi-Raugel Mixed Finite Element Approximation for the Three-Dimensional Stokes Problem
【摘要】 考虑三维S tokes问题的一种混合有限元超收敛,采用满足B abuska-B rezz i条件的B ernad i-R auge l元,对三维空间中的立方体进行正则剖分,通过构造插值后处理算子以及应用B ram b le-H ibert引理得到的解精度提高一阶.
【Abstract】 Superconvergence of a mixed finite element approximation for the three-dimensional Stokes problem is presented.By using the Bernadi-Raugel mixed finite elements which satisfies the Babuska-Brezzi condition a basic error is gained.Considering the problem on the piecewise uniform cuboid elements in the three-dimensional space,the convergence rate of the solution can be increased an order by using the interpolation and Bramble-Hibert lemma.
【关键词】 Stokes问题;
混合有限元;
Bernadi-Raugel元;
超收敛;
后处理;
【Key words】 stokes problem; mixed finite elements; Bernadi-Raugel element; superconvergence; post-processing;
【Key words】 stokes problem; mixed finite elements; Bernadi-Raugel element; superconvergence; post-processing;
【基金】 北京理工大学基础科学研究基金项目(200307A22)
- 【文献出处】 北京理工大学学报 ,Journal of Beijing Institute of Technology , 编辑部邮箱 ,2005年12期
- 【分类号】O241.82
- 【被引频次】1
- 【下载频次】69