节点文献
基于Kalman滤波的人工神经网络算法及在矿物机械活化中的应用
Artificial Neural Network Algorithm Based on Kalman Filter and It’s Application in the Mechanical Activation of Minerals
【摘要】 为了避免传统BP算法的局限性,通过利用Kalman滤波算法对权值矩阵作为滤波状态变量进行估计,在迭代过程中还引入神经元增益gi和状态动量因子γm两参数来平滑权值矩阵.在此基础上建立的BP算法不仅大大加快了收敛速度,而且提高了网络数值的稳定性,应用于矿物机械活化过程模拟得到令人满意的效果,证明是一种有效的BP学习算法.
【Abstract】 In order to overcome the disadvantage of conventional BP algorithm, this paper has developed a improved algorithm, which based on the Kakman filter algorithm and lead two parameters: neural net gain g_i and state momentum factor γ_m into the iterative process for the purpose of smoothing the weigh matrix W. As a result, this algorithm can increase the learning and convergence rate and improve the stability of BP network performance. The practical application has shown that this algorithm is superior to any other algorighms in the field of Mechanical Activation of Minerals, and has the ability of solving practical problem.
【Key words】 Kalman filter algorithm; artificial neural network; BP algorithm; mechanical activation of minerals;
- 【文献出处】 湖南师范大学自然科学学报 ,Journal of Natural Science of Hunan Normal University , 编辑部邮箱 ,2004年02期
- 【分类号】TP183
- 【被引频次】2
- 【下载频次】94