节点文献
三维裂纹问题的高精度数值解法
A NUMERICAL METHOD WITH HIGH ACCURACY FOR 3D CRACK PROBLEMS
【摘要】 提出了一种求解三维均质弹性体中任意形状平片裂纹问题超奇异积分方程组的Chebyshev多项式数值解法 .数值计算结果表明 :文中方法不仅收敛快 ,而且精度高 .
【Abstract】 A new numerical method of Chebyshev polynomials is developed for solving hypersingular integral equations of arbitrary shaped planar crack problems in a three dimensional homogenous elastic solid. The numerical calculations show that the present method yields results with rapid convergence and high accuracy.
【关键词】 均质弹性体;
超奇异积分方程;
Chebyshev多项式;
位移间断基本函数;
平片裂纹;
应力强度因子;
【Key words】 homogenous elasticity; hypersingular integral equation; Chebyshev polynomials; fundamental unknown displacement jump; planar crack; stress intensity factor;
【Key words】 homogenous elasticity; hypersingular integral equation; Chebyshev polynomials; fundamental unknown displacement jump; planar crack; stress intensity factor;
【基金】 国家自然科学基金资助 (项目编号 :196 72 0 36 ) .
- 【文献出处】 固体力学学报 ,Acta Mechanica Solida Sinica , 编辑部邮箱 ,2002年02期
- 【分类号】O346.1
- 【被引频次】25
- 【下载频次】285