节点文献
基于静力试验结果和模糊神经网络的结构模型优化
Optimization of Structural Model Based on Static Test Results and Fuzzy Neural Network
【摘要】 将模糊神经网络算法引入结构有限元模型的自动优化 ,充分利用高斯型隶属函数的万能收敛性、人工神经网络的自学习性和模糊神经网络处理非线性问题的强大功能 ,对结构材料参数进行循环修正 ,并结合工程实际进行验算 ,取得比较好的效果。该方法可以用于对目标结构进行计算机模拟加载试验
【Abstract】 This paper discusses how to lead the algorithm of the fuzzy neural network into the automatic optimization of the structural finite element model based on the results of the static load test It is validated with computations in the practical engineering example by modifying the structural material parameters circularly and the good simulation results shown this algorithm is a proven sound method to simulate the load test of the objective structure with computer aided It takes advantage of the categorical convergence of the Gauss subordination function and the excellent attribute of the self?learning of the artificial neural network and also the powerful function of dealing with the nonlinear problem of the fuzzy neural network
【Key words】 Structure; Model modification; FEM; Fuzzy control; Neural network;
- 【文献出处】 公路交通科技 ,Journal of Highway and Transportation Reseach andk Development , 编辑部邮箱 ,2002年05期
- 【分类号】U441
- 【被引频次】9
- 【下载频次】128