节点文献
两个有向循环图的邻接矩阵的乘积矩阵对应有向图的研究
Study of Digraph Corresponding to Prodnct Matrix of Adjacency Matrix of Any Two Circulaut Digraph
【摘要】 本文得到以下结果:1) [Dn (0, 1, 1, …, 1,0, 1, 1, …, l)]2 = Dn (n-2, n-4,…, n-4, n-2, n -4, …, n-4).2) [Dn (0,1,1,…,1, 0, 0,…, 0)]2 = Dn (0, 0,1, 2,…,(n-3)/2, (n-1)/2,(n-3)/2, …,2, 1) (n is odd).[Dn (0,1,1,…,1, 0, 0,…, 0)]2 = Dn (1, 0, 1, 2,…, n/2-1,n/2, n/2-1,…,3,2) (n is even).3) Dn (a0, a1 …, an-1)* Dn (0, 1, 0, …, 0)= Dn (an-1, a0, a1 a2, …, an-2).4) Dn (a0, a1; …, an-1) * Dn (0, 1, 1, …, 1) = Dn (p-a0, p-a1,p-a2, …, p-an-1) (p=a0 + a1 + a2 +… + an-1).
【Abstract】 In this paper the following results are obtained.1) [Dn (0, 1, 1, …, 1,0, 1, 1, …, l)]2 = Dn (n-2, n-4,…, n-4, n-2, n -4, …, n-4).2) [Dn (0,1,1,…,1, 0, 0,…, 0)]2 = Dn (0, 0,1, 2,…,(n-3)/2, (n-1)/2,(n-3)/2, …,2, 1) (n is odd).[Dn (0,1,1,…,1, 0, 0,…, 0)]2 = Dn (1, 0, 1, 2,…, n/2-1,n/2, n/2-1,…,3,2) (n is even).3) Dn (a0, a1 …, an-1)* Dn (0, 1, 0, …, 0)= Dn (an-1, a0, a1 a2, …, an-2).4) Dn (a0, a1; …, an-1) * Dn (0, 1, 1, …, 1) = Dn (p-a0, p-a1,p-a2, …, p-an-1) (p=a0 + a1 + a2 +… + an-1).
【Key words】 circulaut matrix; adjaceucy matrix; product; circulaut digraph;
- 【文献出处】 广东职业技术师范学院学报 ,Journal of Guangdong Institute For Nationalities , 编辑部邮箱 ,2001年04期
- 【分类号】O157.5
- 【下载频次】66