节点文献

将“节面数”引入HMO法对环共轭体系π分子轨道的求解

Applying "Node Numbers"for Discussing Non-located π-Molecular Orbitals of a Circlewise Conjugated Molecule

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 郝凌云张宏

【Author】 Hao Lingyun Zhang Hong(Chemistry Department of Fuyang Teachers College,Fuyang 236032)

【机构】 阜阳师范学院化学系阜阳师范学院化学系 阜阳 236032阜阳 236032

【摘要】 休克尔分子轨道法(HMO)是基于建立共轭分子体系的休克尔行列式或久期方程求解得到该分子体系的分子轨道能量Ei及分子轨道波函数ψ_i的表达式。用该方法对环共轭分子体系讨论时,由于环共轭分子具有特殊的首尾相连环状分子结构,求解其久期方程还需引入较为抽象的假定条件。本文将分子轨道波函数中的“节面数”引入对环共轭分子体系讨论,在分子轨道波函数图中直接标示出节面位置,则求解需引入的相关条件可从图中明显得出,使求解过程直观易懂。

【Abstract】 H■ckel Molecular Orbital Theory (HMO) is based on solving the H(?)ckel determinant of a conjugated molecule or its formula to obtian its molecular orbital energy (Ei)and molecular orbital wavefunction (Ψ_i). However,if this theory(HMO)is used for discussing a circlewise conjugated molecule which has particular circlewise molecular structure,some additionally abstract assumptions should be put up before its discussing. In this report,we apply "node numbers" of molecular orbital wavefunetion for discussing non-located π—molecular orbitals of a circlewise conjugated molecule. Well then,the abstract assumptions which are mentioned above can be visibly seen in their molecular orbital wavefunetions’figures on which the nodes are marked.

  • 【文献出处】 阜阳师范学院学报(自然科学版) ,Journal of Fuyang Teachers College Natural Sciences , 编辑部邮箱 ,2000年02期
  • 【分类号】O641
  • 【下载频次】128
节点文献中: