节点文献
具有人口控制的离散SOLOW模型
A Discrete Solow Model with Population Control
【摘要】 在离散Solow模型中假设劳动力增长率为一个单调下降,极限为零的过程,得出资本-劳动比收敛到劳动增长率为零离散Solow模型的稳态解[1].给出了具有相同初值,不同劳动力增长率下解的比较定理和相同劳动力增长率,但不同初始资本-劳动比的解的比较定理。证明具有人口控制的经济最终的人均消费和人均资本高于不进行人口控制的经济,从理论上阐明控制人口增长对经济增长的促进作用。
【Abstract】 A discrete Solow model with population control is given. We assume that the labor force growth rate is strictly descreasing from a positive value to zero. We prove that the per capita capital converges to the steady state of the classical discrete Solow model with the zero labor force growth rate. For given initial per capita capital value, a comparision theorem with different labor force growth rate is obtained and a comparision theorem with different initial per capita capital value is given. We theoretical confirm that the population control is very favourable for economic growth.
【Key words】 labor force increasing rate; economic growth; Solow model; population control;
- 【文献出处】 武汉工业大学学报 ,JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY , 编辑部邮箱 ,1999年04期
- 【分类号】O141.4
- 【被引频次】1
- 【下载频次】95