节点文献
害虫、天敌和食料的数学模型
THE MATHEMATIC MODELS OF RELATIONSHIP AMONG PEST INSECT, NATURAL ENEMIES AND FEED ABOUNDANCE
【摘要】 本文从实际问题出发,结合已有的描述群落生态的数学模型,提出了一组描述马尾松毛虫(Dendrolimus pnnctalus,walker)、条毒蛾(Lymantria dissoluta,Swinhoe)、天敌和食料之间动态关系的数学模型: w(k+1=(a1x(k+1)/(1+a2x(k+1)/z(k))+a3w(k)/(1+a4w(k)/y(k)) x(k+1)=b1w(k)/(1+b2w(k)/y(k))+b3x(k)/(1+b4x(k)/z(k))+ y(k+1)=c1z(k)/[1+csz(k)+c3y(k)][1+c4w(k)+(k+1)] z(k+1)=d1z(k)/[1+d2z(k)][1+d3x(k)+d4w(k)] 对于这个模型的线性化形式,详细讨论了控制松毛虫的暴发所需的条件及其生态学机制。
【Abstract】 In this paper, a set of model was developed to describe the relationship among Dendrolimus punctatus (w.) , Lymantria dissoluta (S.), natural enemies and feed aboundance based on a practical problem: w(k+1)=a1x(k+1)/1+α2x(k+1)/z(k)+α3人(k)/1+α4w(k)/y(k), x(k+1)=b1w(k)/1+b2w(k)/y(k)+b3x(k)/1+b4x(k)/z(k), y(k+1)=c1y(k)/[1+c2z(k)+C3y(k)][1+c4w(k)+c5x(k+1)], z(k+1)=(d1z(k))/([1+d2z(k)][1+d3x(k)+d4w(k)]) In the meanwhile, these models were lincarized and the conditions required and ecological mechanism were detailly discussed fr controlling the D. punctatus.
【Key words】 D. punctatus; L. dissoluta; natural enemies; mathematic model.;
- 【文献出处】 生物数学学报 ,Journal of Biomathematics , 编辑部邮箱 ,1991年01期
- 【下载频次】55