KPCA extracting principal component with nonlinear method is an improved conventional PCA.The Kernel Principal Component Analysis(KPCA),is used in face recognition,which can make full use of the high correlation between different face images for feature extraction by selecting the proper kernel function.So KPCA can extract the feature set more suitable in categorization than classical conventional PCA.Based on ORL face database,recognizes correlation coefficients of principal component extracted by KPCA.Exp...
【基金】
国家自然科学基金资助项目(60475036)
【更新日期】
2006-09-05
【分类号】
TP391.41
【正文快照】
人脸识别是人类视觉系统所具有的最基本和最重要的功能之一,是人类交流的基础·人们通过这一视觉功能识别彼此的身份,理解对方的感情和意图·因此,利用计算机进行人脸自动识别(automatic face recognition,AFR)一直是计算机视觉领域中的重要研究课题·近年来,随着高速硬件和人?