节点文献
基于改进贝叶斯模型的问题分类
Modified Bayesian Model Based Question Classification
【Author】 Zhang Yu Liu Ting Wen Xu (School of Computer Science and Technology,Harbin Institute of Technology,Harbin,150001)
【机构】 哈尔滨工业大学计算机科学与技术学院;
【摘要】 随着计算机及互联网络技术的发展,开放域问答系统越来越受到人们的关注,因为它能够给用户提供相对简洁、准确的结果。开放域问答系统通常包括问题分类、问题扩展、搜索引擎、答案抽取和答案选择五个主要部分。问题分类在问答系统中起着很重要的作用,它的准确性直接影响到最终抽取的答案的准确性。本文在对已有的贝叶斯分类方法进行分析的基础上,对该方法进行了改进。为了验证该方法的效果,构造了问题的训练集和测试集。从实验结果可以看出,该方法在实际应用中获得了较好的效果。
【Abstract】 With the rapid development of Intemet,the Open-domain Question Answering system becomes more andmore attractive because the compact and exact result can be given by it.The Open-domain Question Answering system iscomposed of five parts,that is,question classification,question expansion,search engine,answer extraction and answerselection.The question classification plays an important role in the question answering system,and affects the correctness ofthe question answering system directly.In this paper,a modified Bayesian model was introduced based on analysis of theBayesian model.The training set and testing set were constructed to verify the effect of this model.Experiments showed thatthis method could achieve better results in practice.
【Key words】 Bayesian Model; Question Classification; Question-Answering System;
- 【会议录名称】 NCIRCS2004第一届全国信息检索与内容安全学术会议论文集
- 【会议名称】NCIRCS2004第一届全国信息检索与内容安全学术会议
- 【会议时间】2004-11
- 【会议地点】中国上海
- 【分类号】TP391.3
- 【主办单位】复旦大学计算机科学与工程系、上海市智能信息处理重点实验室