节点文献

基于遗传算法的Al-5%Cu合金电脉冲孕育处理参数优化

Optimization of Electric Pulse Modification Parameters in Al-5%Cu Alloy Using Neural Networks and Genetic Algorithms

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王冰王建中张震斌齐锦刚苍大强

【Author】 WANG Bing1,2,WANG Jian-zhong2,ZHANG Zhen-bin2,QI Jin-gang2,CANG Da-qiang1(1.School of Metallurgical and Ecological Engineering,University of Science and Technology,Beijing 100083,China;2.Department of Material and Chemical Engineering,Liaoning Institute of Technology,Jinzhou 121001,China)

【机构】 北京科技大学冶金与生态工程学院辽宁工学院材料与化学工程学院北京科技大学冶金与生态工程学院 北京100083辽宁锦州121001北京100083

【摘要】 以实验为基础,利用神经网络和遗传算法优化Al-5%Cu合金的电脉冲孕育处理工艺参数。神经网络的输入参数为脉冲电压、脉冲时间和电脉冲孕育处理时熔体温度,输出参数是合金凝固组织的晶粒度。在神经网络训练的基础上,采用遗传算法优化神经网络的输入参数。结果表明,神经网络和遗传算法的组合建模获得了较好的优化结果。

【Abstract】 Based on the experiments an optimal pattern of the electric pulse modification for Al-5%Cu was investigated using neural networks and genetic algorithms.The input parameters of the artificial neural network(ANN) are the voltage of electric pulse,electric pulse time and temperature of molten alloy.The outputs of the ANN model are the grain size of Al-5%Cu alloy.Based the successfully trained ANN model,genetic algorithms(GA) are used to optimize the input parameters of the model.The good optimization can be obtained through the integrated mode of neural networks and genetic algorithms.

【基金】 国家自然科学基金资助项目(50674054)
  • 【文献出处】 铸造技术 ,Foundry Technology , 编辑部邮箱 ,2007年08期
  • 【分类号】TG131
  • 【下载频次】127
节点文献中: 

本文链接的文献网络图示:

本文的引文网络