节点文献

基于涡度协方差法和生理生态法对落叶松林CO2通量的初步研究

PRELIMINARY STUDY OF CO2 FLUX OF A LARCH FOREST BY EDDYCOVARIANCE AND ECOPHYSIOLOGICAL METHODS

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王文杰祖元刚王辉民杨逢建三枝信子小池孝良山本晋

【Author】 WANG Wen-Jie1, ZU Yuan-Gang 1* , WANG Hui-Min 2,3 , YANG Feng-Jian1, Saigusa Nobuko3, Koike Takayoshi4, and Yamamoto Susumu5 1Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China, 2Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China, 3National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569, Japan, 4Hokkaido University Forests FSC Hokkaido University, Sapporo 060-0809, Japan, and 5Graduate School of Environmental Science, Okayama University, Okayama 700-8530, Japan

【机构】 东北林业大学森林植物生态学教育部重点实验室中国科学院地理科学与资源研究所产业技术综合研究所环境管理技术研究部门 筑波305-8569日本产业技术综合研究所环境管理技术研究部门北海道大学北方生物圈野外科学中心冈山大学大学院环境学研究科哈尔滨150040北京100101筑波305-8569札幌060-0809冈山700-8530

【摘要】 该文利用涡度协方差法和生理生态学方法(不同分量的累积和)获得的通量观测数据,对老山落叶松(Lar-ixgmelinii)林(45°20′N,127°34′E)的碳收支进行了分析。通过对每0.5h所测数据进行的分析表明,能量平衡达到75%,说明涡度协方差法适应于本站的研究。较阴天气情况下,林分光照利用效率显著高于晴朗天气,可能归因于阴天较多的散射光。以单位土地面积计算发现,通过涡度协方差法计算的落叶松林生态系统的总初级生产力在20~50μmol.m-2.s-1之间,远高于冠层叶片的总光合速率9.8~23.4μmol.m-2.s-1(平均值16.2μmol.m-2.s-1),而当综合考虑冠层光合和林下植物光合作用时,两种方法测定结果吻合性较好,说明林下植物对落叶松林碳平衡有重要影响。在估计森林生态系统呼吸方面,以有风夜晚净生态系统交换量(NEE)来代表生态系统呼吸总量(3~9μmol.m-2.s-1)低估了生态系统呼吸总量,粗略估计较生理生态学方法(不同呼吸分量的累积和)低估了50%左右(14.2μmol.m-2.s-1)。结果发现两种方法在估计森林碳平衡方面存在一定的差异,呼吸量的估计差异应是今后研究的重点。

【Abstract】 Aims The two main methods for estimating CO-2 flux from forests are the eddy covariance micrometeorological method and the ecophysiological component summation method. Eddy covariance is a standard method for long-term, direct measurement of forest CO-2 and is used in studying large-scale terrestrial carbon budgets, while the ecophysiological method can estimate each component (e.g., stem, leaves, branches, roots, as well as soil microbes) of total CO-2 flux of forests. Because forest CO-2 flux study, including eddy covariance measurement, is a recent development in China, it is important to compare results from these two methods for understanding scaling-up of forest carbon budgets. We did a preliminary comparison during a typical month of the strongest sink capacity (June 2002). Our aim was to determine how the methods differed in carbon budget estimation and evaluate implications for future research. Methods A micrometeorological tower with the eddy covariance system was used to directly estimate net ecosystem exchange of a larch (Larix gmelinii) plantation at Laoshan station (45°20′ N, 127°34′ E). Ecophysiological measurements by a Li-6400 system were used to measure leaf photosynthesis and respiration of the tree canopy and herbaceous understory, stem respiration, branch respiration and soil respiration. Root respiration, soil microbe respiration and litter respiration were measured by the pre-installed trenched box and litter exclusion method. We converted each photosynthesis and respiration value from an organ-area base to a soil-area base using leaf area index measured by LAI-2000 and stem area index and branch area index estimated by standard tree sampling. Important findings Energy balance was estimated to be 75% using half-hourly flux data, but improved when 5 days of accumulated data were used, indicating that the eddy covariance method is suitable for this site. In relative cloudy weather (mean photosynthetic active radiation, PAR<400 μmol·m -2 ·s -1 ), light use efficiency was much higher than on days with a mean PAR>500 μmol·m -2 ·s -1 . This may be related to diffuse light on cloudy days. Expressed on a soil area base, gross primary productivity (GPP) of the larch plantation was 20- 50 μmol·m -2 ·s -1 estimated by the eddy covariance method. This value was much higher than the total photosynthetic capacity of dominant canopy leaves of 9.8-23.4 μmol·m -2 ·s -1 (mean of 16.2 μmol·m -2 ·s -1 ); however, it was equivalent to the summation of dominant canopy and understory photosynthesis, indicating the critical importance of understory photosynthesis in the carbon balance of the studied plantation. Ecosystem respiration estimated by eddy covariance on a windy night was 3-9 μmol·m -2 ·s -1 , which is about 50% lower than estimated by the ecophysiological method (14.2 μmol·m -2 ·s -1 ). This large discrepancy between the two methods would lead to a large difference in carbon sink estimation. Therefore, methods of estimating respiration need additional study.

【基金】 国家自然科学基金(30300271);科技部重大基础研究前期项目(2004CCA02700);日本环境省战略研究项目
  • 【文献出处】 植物生态学报 ,Journal of Plant Ecology , 编辑部邮箱 ,2007年01期
  • 【分类号】S791.22
  • 【被引频次】51
  • 【下载频次】883
节点文献中: 

本文链接的文献网络图示:

本文的引文网络