节点文献
一类高振荡常微分方程数值解法的误差分析
The error analysis of numerical methods for a kind of highly-oscillatory ordinary differential equations
【摘要】 以特殊的线性振荡方程y″+g(t)y=0(其中limt→∞g(t)=+∞)为例讨论了高振荡微分方程数值解的问题.分析了梯形格式的整体截断误差,并对梯形格式做了修改,讨论了修改后格式的局部截断误差对整体截断误差的影响,最后给出了数值结果.
【Abstract】 This paper deals with numerical solutions of highly-oscillatory ordinary differential equations with a special reference to the linear oscillator y″+g(t)y=0(where limt→∞ g(t)=∞).Analyzing the global error,we modified the trapezoidal method.We investigated the influence of the modified local error on the global error.Finally,modified some numerical results were given.
【关键词】 高振荡常微分方程;
梯形方法;
局部截断误差;
整体截断误差;
【Key words】 Highly-oscillatory ordinary differential equations; trapezoidal method; local error; global error;
【Key words】 Highly-oscillatory ordinary differential equations; trapezoidal method; local error; global error;
【基金】 北京交通大学人才科研基金项目(2002RC041)资助
- 【文献出处】 中国科学院研究生院学报 ,Journal of the Graduate School of the Chinese Academy of Sciences , 编辑部邮箱 ,2007年02期
- 【分类号】O241.81
- 【被引频次】2
- 【下载频次】239