节点文献

Projectively flat Asanov Finsler metric

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【Author】 HAN Jing-wei1, YU Yao-yong2 (1Department of Mathematics, Zhejiang University, Hangzhou 310027, China) (2School of Science, Hangzhou Dianzi University, Hangzhou 310028, China)

【摘要】 In this work, we study the Asanov Finsler metric F=α(β2/α2+gβ/α+1)1/2exp{(G/2)arctan[β/(hα)+G/2]}, where α=(αijyiyj)1/2 is a Riemannian metric and β=biyj is a 1-form, g∈(-2,2), h=(1-g2/4)1/2, G=g/h. We give the necessary and sufficient condition for Asanov metric to be locally projectively flat, i.e., α is projectively flat and β is parallel with respect to α. Moreover, we proved that the Douglas tensor of Asanov Finsler metric vanishes if and only if β is parallel with respect to α.

【Abstract】 In this work, we study the Asanov Finsler metric F=α(β2/α2+gβ/α+1)1/2exp{(G/2)arctan[β/(hα)+G/2]}, where α=(αijyiyj)1/2 is a Riemannian metric and β=biyj is a 1-form, g∈(-2,2), h=(1-g2/4)1/2, G=g/h. We give the necessary and sufficient condition for Asanov metric to be locally projectively flat, i.e., α is projectively flat and β is parallel with respect to α. Moreover, we proved that the Douglas tensor of Asanov Finsler metric vanishes if and only if β is parallel with respect to α.

【基金】 Project (No. 10571154) supported by the National Natural Science Foundation of China
  • 【文献出处】 Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal) ,浙江大学学报A(应用物理及工程版)(英文版) , 编辑部邮箱 ,2007年06期
  • 【分类号】O186.11
  • 【被引频次】2
  • 【下载频次】31
节点文献中: 

本文链接的文献网络图示:

本文的引文网络