节点文献

滚动轴承故障的EMD诊断方法研究

An empirical mode decomposition based method for rolling bearing fault diagnosis

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 高强杜小山范虹孟庆丰

【Author】 GAO Qiang~1,DU Xiao-shan~2,FAN Hong~2,MENG Qing-feng~2 (1.Automobile School,Chang′an University,Xi′an 710064,China;2.Mechanical Engineering School,Xi′an Jiaotong University,Xi’an 710049,China)

【机构】 长安大学汽车工程学院西安交通大学机械工程学院西安交通大学机械工程学院 陕西西安710064陕西西安710049

【摘要】 提出了一种基于经验模式分解(Empirical Mode Decom position,EMD)的滚动轴承故障诊断方法。这种方法中,局部损伤滚动轴承产生的高频调幅信号成分被EM D分解作为本征模函数分离出来,然后用Hilbert变换得到其包络信号,计算包络谱,就能够提取滚动轴承故障特征频率。该方法被用于分析实验台上采集的具有内圈损伤及外圈损伤的滚动轴承振动信号。分析结果表明,与传统的包络解调方法相比,新方法能够更有效地提取轴承故障特征,诊断轴承故障,因而具有重要的实用价值。

【Abstract】 A new Empirical Mode Decomposition(EMD) based approach for rolling bearing fault detection is presented.In this approach,the characteristic high-frequency signal with amplitude modulation of a rolling bearing with local damage is separated from the mechanical vibration signal as an Intrinsic Mode Function(IMF) by using EMD,and an envelope signal can be obtained by using Hilbert transform.Then,the characteristic frequencies of rolling bearing fault are extracted by applying Fourier transform to the envelope signal.The presented approach is used to analyze experimental signals collected from rolling bearings with outer race damage or inner race damage,and the results indicate that the EMD based approach can detect rolling bearing fault more effectively comparing with the traditional envelope analysis method.

【基金】 国家自然科学基金资助项目(50475087);国家高技术研究发展计划(863)项目(2006AA04Z420)
  • 【文献出处】 振动工程学报 ,Journal of Vibration Engineering , 编辑部邮箱 ,2007年01期
  • 【分类号】TH133.33
  • 【被引频次】225
  • 【下载频次】1844
节点文献中: 

本文链接的文献网络图示:

本文的引文网络