节点文献

矩形剖分上一类二元样条空间与薄板纯弯曲

A Kind of Bivariate Spline Space Over Rectangular Partition and Pure Bending of Thin Plate

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王仁宏常锦才

【Author】 WANG Ren-hong1, CHANG Jin-cai1,2 (1.Institute of Mathematical Sciences, Dalian University of Technology, Dalian,Liaoning 116024,P.R.China; 2.College of Sciences, Hebei Polytechnic University, Tangshan,Hebei 063009,P.R.China)

【机构】 大连理工大学数学科学研究所大连理工大学数学科学研究所 辽宁大连116024辽宁大连116024河北理工大学理学院河北唐山063009

【摘要】 构造性地给出了矩形剖分上分片2次一阶光滑的二元样条空间的力学背景.采用力学分析方法,通过在内网线上施加外力偶并适当取值使挠曲面成为分片形式,建立了矩形剖分上一类二元样条与薄板纯弯曲之间的对应关系,并对“光滑余因子”及“协调条件”给出了相应的力学解释.更进一步,通过引入扭矩,对上述空间中任一样条函数建立了相应的力学背景.

【Abstract】 The mechanical background of the bivariate spline space of degree 2 and smoothness 1 on rectangular partition was presented constructively. Making use of mechanical analysis method, by acting couples along the interior edges with suitable evaluations, the deflection surface was divided into piecewise form, therefore,the relation between a class of bivariate splines on rectangular partition and the pure bending of thin plate was established.In addition, the interpretation of smoothing cofactor and conformality condition from the mechanical point of view was given. Furthermore, by introducing twisting moments, the mechanical background of any spline belonging to the above space was set up.

【基金】 国家自然科学基金资助项目(60533060;69973010;10271022)
  • 【文献出处】 应用数学和力学 ,Applied Mathematics and Mechanics , 编辑部邮箱 ,2007年07期
  • 【分类号】O241.3
  • 【被引频次】2
  • 【下载频次】111
节点文献中: 

本文链接的文献网络图示:

本文的引文网络