节点文献
具临界Sobolev-Hardy指数的半线性椭圆方程的非平凡解
Nontrivial Solutions for a Semilinear Elliptic Equations with Critical Sobolev-Hardy Exponent
【摘要】 本文研究了如下问题:- div(︱x︱βu) =︱x︱α︱u︱2*(α,β)-2u +λ︱x︱σ︱u︱q-2, x∈Ω,u=0, x∈аΩ, 这里Ω■RN是有界光滑区域且0∈Ω,2*(α,β)=2(N+α)/(N+β-2),运用Sobolev-Hardy不等式和山路几何,证明了在一定的条件下方程至少存在一个非平凡解.
【Abstract】 In this paper, we deal with the following problem- div(︱x︱βu) =︱x︱α︱u︱2α,β-2u +λ︱x︱σ︱u︱q-2, x∈Ω,u=0, x∈аΩ, where Ω■RNRN is a smooth bounded domain and 0∈Ω,2α,β=2(N+α)/(N+β-2). Under certain condition,there proves the existence of at least one nontrivial solution for the equation by Sobolev-Hardy inequality and the mountain pass geometry.
【关键词】 半线性椭圆方程;
非平凡解;
临界Sobolev-Hardy指数;
山路几何;
【Key words】 Semilinear elliptic equation; Nontrivial solution; Critical Sobolev-Hardy exponent; Mountain pass geometry;
【Key words】 Semilinear elliptic equation; Nontrivial solution; Critical Sobolev-Hardy exponent; Mountain pass geometry;
【基金】 国家自然科学基金资助项目(10571032)
- 【文献出处】 应用数学 ,Mathematica Applicata , 编辑部邮箱 ,2007年02期
- 【分类号】O175.25
- 【下载频次】58