节点文献

过程神经元网络学习算法及软测量方法的研究

Study on Training Algorithms and Soft Sensing Method of Process Neural Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘载文王正祥王小艺杨斌程志强

【Author】 LIU Zai-wen1, WANG Zheng-xiang1,2, WANG Xiao-yi1, YANG Bin1, CHENG Zhi-qiang1 (1.School of Information Engineering, Beijing Technology and Business University, Beijing 100037, China; 2. Ganshu Jinchuan Group Company, Lanzhou 737100, China)

【机构】 北京工商大学信息工程学院北京工商大学信息工程学院 北京100037北京100037甘肃金川集团公司兰州737100北京100037

【摘要】 研究输入输出以及连接权函数均可为时间函数的过程神经元网络(process neural network,PNN)的学习算法,在基本算法上增加基函数展开系数的规一化处理、权函数动量项调整项,提出学习率自适应调整方法和加速网络收敛速度的改进算法。将过程神经元网络引入到生产过程质量参数的软测量,研究基于正交基展开的过程神经元网络算法,通过分析原网络收敛速度慢等问题,对传统BP算法加以改进,实现了污水处理过程出水水质BOD的预测,仿真取得较好的结果,实践证明这是一种时变过程参数软测量的新方法。

【Abstract】 The training algorithms for process neural network (PNN), which inputs, outputs and network weight function are varied with time, were studied. The normalizing rule based on function orthogonal basis expansion on the original algorithm, and function momentum adjustment item were developed, and learning rate automatic adjustment method and modified algorithms on raising training speed were also introduced. The prediction of quality variables for produce process was realized by using process neural network, through analyzing the reasons of the network low-speed convergence, researching algorithm based on function orthogonal basis expansion for process neural network, referring to the improvement of traditional BP algorithm. By emulation, a good result was gotten to predict effluent BOD from wastewater treatment process, and fact shows that this is a new method for soft sensing of parameters varied with time.

【基金】 北京市自然科学基金项目(4062011);北京市高校拔尖创新人才计划项目(200589);北京市优秀人才项目;北京市教育委员会科技发展项目(KM200310011040)。
  • 【文献出处】 系统仿真学报 ,Journal of System Simulation , 编辑部邮箱 ,2007年07期
  • 【分类号】TP183;TP274.4
  • 【被引频次】32
  • 【下载频次】311
节点文献中: 

本文链接的文献网络图示:

本文的引文网络