节点文献

大规模训练集的快速缩减

Fast Reduction for Large-Scale Training Data Set

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 罗瑜易文德何大可林宇

【Author】 LUO Yu1,YI Wende2,HE Dake1,LIN Yu3(1.School of Information Science and Tech.,Southwest Jiaotong University,Chengdu 610031,China;2.Dept.of Mathematics and Computer Science,Chongqing University of Arts and Sciences,Chongqing 402160,China;3.School of Economics and Management,Southwest Jiaotong University,Chengdu 610031,China)

【机构】 西南交通大学信息科学与技术学院重庆文理学院数学与计算机科学系西南交通大学经济管理学院 四川成都610031重庆402160四川成都610031

【摘要】 为了进一步减少支持向量机的训练时间,提出了一种基于类别质心的训练集缩减算法.该算法根据样本的几何分布去除训练集中大部分非支持向量.对样本规模在104数量级的数据集进行了训练实验,结果显示,在基本不损失分类精度的情况下,训练时间比直接用SMO(序贯最小优化)算法减少30%,说明该算法能有效地提高支持向量机的训练速度.

【Abstract】 In order to cut down the time of training a large-scale data set by using SVM(support vector machine),a fast algorithm for reducing training sets was proposed based on class centroid.With this algorithm the most of non-support vectors are removed in the light of the geometrical distribution of samples.Experiments were made on several data sets at the level of 104 magnitude.The experimental results show that compared with the SMO(sequential minimal optimization) algorithm,the proposed algorithm decreases training time by 30% under the condition of ensuring the SVM’s classification accuracy to greatly improve SVM’s training speed.

【基金】 上海市特种光纤重点实验科研项目(20050926)
  • 【文献出处】 西南交通大学学报 ,Journal of Southwest Jiaotong University , 编辑部邮箱 ,2007年04期
  • 【分类号】TP181
  • 【被引频次】12
  • 【下载频次】174
节点文献中: 

本文链接的文献网络图示:

本文的引文网络