节点文献
万有Teichmüller空间对数导数嵌入模型的一些性质
Some Geometric Properties of the Universal Teichmüller Space by the Derivative of Logarithm
【摘要】 在对数导数意义下,万有Teichmüller空间T1可表示为无穷多个互不相交的连通分支的并集T1={■ Lθ}∪L,研究了该模型分支边界的几何性质,证明了L与Lθ的边界存在无穷多个公共点,同时还解决了关于一个分支中的点到另一分支中心距离上确界的公开问题.
【Abstract】 The model of the Universal Teichmüller Space by the derivative of logarithm is the union of infinitely many disconnected components:T1={■ Lθ}∪L.In this paper,the geometric property of the boundary of T1 is investigated,and it is proved that for anyθ∈[0,2π),L and Lθhave infinitely many common points.In addition,an open problem about the supremum of the distance from the points of one component to the center of another component is solved.
【关键词】 万有Teichmüller空间;
Schwarz导数;
对数导数;
外半径;
【Key words】 Universal Teichmüller space; Schwarzian derivative; Pre-Schwarzian derivative; Outer radius;
【Key words】 Universal Teichmüller space; Schwarzian derivative; Pre-Schwarzian derivative; Outer radius;
【基金】 国家自然科学基金(No.10571028)资助的项目.
- 【文献出处】 数学年刊A辑(中文版) ,Chinese Annals of Mathematics , 编辑部邮箱 ,2007年03期
- 【分类号】O177
- 【被引频次】5
- 【下载频次】95