节点文献

基于位点保守性参量和位置权重矩阵预测酵母转录因子结合位点

Predicting Transcription Factor Binding Sites in Yeast Genome by Using of the Site Conservative Parameters and Position Weight Matrix (PWM)

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 杨科利李前忠林昊

【Author】 YANG Ke-li,LI Qian-zhong*,LIN Hao(Department of Physics,College of Sciences and Technology,Inner Mongolia University,Hohhot 010021,China)

【机构】 内蒙古大学理工学院物理系内蒙古大学理工学院物理系 内蒙古呼和浩特010021内蒙古呼和浩特010021

【摘要】 目的:改进转录因子结合位点的理论预测方法。方法:构建转录因子结合位点位置权重矩阵,以转录因子结合位点每一位置的碱基保守性指数Mi为参量,利用位置权重打分函数算法(PWMSA)对酵母五种转录因子结合位点进行预测。结果:利用self-consistency和cross-validation两种方法对此算法进行检验,均获得了较高的预测成功率,结果表明5种转录因子结合位点的预测成功率均超过80%。结论:与已有的三种预测转录因子结合位点的软件进行比较,PWMSA算法明显优于其他三种算法,核苷酸水平上的关联系数和结合位点水平上的关联系数分别提高了0.25和0.22。

【Abstract】 Objective:To improve the predictive capacity of the algorithm for transcription factor binding sites.Methods: By constructing position weight matrix and calculating the site conservative index vectors Mi in transcription factor binding sites,a novel position weight matrix scoring algorithm(PWMSA) for predicting yeast transcription factor binding sites is presented.Results: By using of the self-consistency test and the 10-fold cross-validation test,prediction results show that the more than 80% of correct prediction are obtained for all of five transcription factor binding sites.Conclusion: By comparing our algorithm with other three softwares,the results show that the overall prediction accuracies of PWMSA are more 0.22 and 0.25 than the other three algorithms,respectively,at binding sites segment level and nucleotide level.

【基金】 国家自然科学基金项目资助(30560039)
  • 【分类号】Q78
  • 【被引频次】10
  • 【下载频次】451
节点文献中: 

本文链接的文献网络图示:

本文的引文网络