节点文献

基于改进遗传算法的堆石体流变模型参数反馈分析

Back analysis of rockfill creep model parameters based on improved genetic algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 周伟常晓林胡颖闫生存

【Author】 ZHOU Wei~1,CHANG Xiaolin~1,HU Ying~2,YAN Shengcun~2(1.State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,Wuhan 430072;2.Hubei Qingjiang River Hydropower Development Company Ltd,Yichang,Hubei 443002)

【机构】 武汉大学水利水电学院水资源与水电工程科学国家重点实验室湖北清江水布垭工程建设公司湖北清江水布垭工程建设公司 武汉430072武汉430072湖北宜昌443002

【摘要】 本文提出一种序列二次规划优化算法与标准遗传算法结合的流变模型参数反馈分析方法,这种算法既发挥了序列二次规划优化算法省时、高效、局部搜索能力强的特点,又发挥了遗传算法可以搜索到全局最优解而避免陷入局部极小值的优点,改善了常规遗传算法的收敛速度。将遗传算法搜索到的全局最优近似解作为初始值,代入收敛效率较高的序列二次规划程序进行最终局部优化。以某堆石坝为例,应用上述反演方法对高围压下的堆石体9参数流变模型参数进行了反演分析,验证了此方法的可行性与有效性。

【Abstract】 An intelligent back analysis method based on genetic algorithm(GA) and sequence quadratic programming(SQP) is proposed in this paper.GA with group search and global convergence can efficiently overcome the problem of high sensitivity to initial guess and not run into local minimum.SQP has a high convergence rate and precision solution for local search.A hybrid genetic algorithm(HGA) which combines the advantages of GA and classical SQP algorithm is presented and overcomes the shortcoming of GA,namely showing the lower convergence rate at the time near true solution.The global convergent approximate solution searched by GA is accepted as the initial input value with SQP optimizing analysis to gain the final optimal solution.HGA is applied to perform back analysis of a rockfill creep model with nine parameters under high confining pressure.The results show that the computed values of rockfill creep deformation fit closely to actual monitoring data.

【基金】 国家自然科学基金(50509019)
  • 【文献出处】 水力发电学报 ,Journal of Hydroelectric Engineering , 编辑部邮箱 ,2007年03期
  • 【分类号】TV641.4
  • 【被引频次】14
  • 【下载频次】293
节点文献中: 

本文链接的文献网络图示:

本文的引文网络