节点文献
基于遗传算法的巡航导弹航迹规划的一种收敛速度分析方法
A Convergence Rate Analysis Method for Route Planning Cruise Missile based on Genetic Algorithm
【摘要】 航迹规划收敛速度的分析是其理论研究中人们所关注的一个重要问题.首先给出了描述表征巡航导弹航迹的7个特征变量,制定相应的编码方案,而后利用泛函分析的几何收敛理论定义了两条航迹的距离和个体适应度函数值.对于给出的第t代群体,定义了最大适应度值、最小适应度值和平均适应度函数值.在此基础上,定义了收敛速度(最大适应度函数收敛速度、最小适应度函数收敛速度、平均适应度收敛速度);然后利用数理统计理论,分别得到关于7个特征变量的满意度函数fxi(xi),i=1,2,…7;由此,个体适应度函数定义为F(X)=sum from i=1 to 7 (ω_ifx_i(x_i)),其中为权重值.据此,就可得到其收敛速度的阶的估计,进一步得到了在大地方位角约束模型条件下的其收敛速度的表达式.结论是:巡航导弹航迹规划的收敛速度只与特征变量的满意度和相应的权值的乘积有关.
【Abstract】 It is crucial to analyze the convergence rate for the route planning problem.In many related papers,researchers have paid attentions to the Markov probability methods with genetic algorithm(GA).With these methods constraint models could not be employed effectively,so that the planned routes are much easier to departure from the direction to the target,and of low efficiency and slow speeds.In this paper,a coding scheme with seven variables denoting one route character is proposed at first.Then the distance between two routes and the fitness function value are defined by using the convergence theories of Euclidean geometry.So for the given t th population,the maximum,the minimum and the mean of fitness function value are defined.And the convergence rates(the maximum,the minimum and the mean)are also defined.Then with the probability theory,we define the assurance degree functions for each of the seven variables as fxi(xi),i = 1,2 …,7,which are used to obtain the individual fitness function asF(X)=sum from i=1 to 7(ω_ifx_i(x_i)),where ωi is the weight value.The evaluation for the convergence exponent now can be deduced.At last,the geodetic azimuth is taken as an important constraint.The further expression of convergence exponent is acquired under the limitation of the geodetic azimuth constraint model.The final conclusion is:the convergence exponent for cruise missile is only related to the product of the assurance degree and its weight value for each of the seven variables.The conclusion can instruct the practice project for route planning effectively.
【Key words】 genetic algorithm; route planning; convergence rate; cruise missiles;
- 【文献出处】 南京大学学报(自然科学版) ,Journal of Nanjing University(Natural Sciences) , 编辑部邮箱 ,2007年02期
- 【分类号】TN966
- 【被引频次】3
- 【下载频次】248