节点文献

基于PSO-BP网络的板形智能控制器

Intelligent flatness-controller based on PSO-BP network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘建昌陈莹莹张瑞友

【Author】 LIU Jian-chang~1 CHEN Ying-ying~2 ZHANG Rui-you~2 1.Key Laboratory of Integrated Automation of Process Industry,Ministry of Education,Northeastern University,Shenyang Liaoning 110004,China; 2.College of Information Science and Engineering,Northeastern University,Shenyang Liaoning 110004,China

【机构】 东北大学流程工业综合自动化教育部重点实验室东北大学信息科学与工程学院东北大学信息科学与工程学院 辽宁沈阳110004辽宁沈阳110004

【摘要】 为了解决传统的板形识别与控制中的识别精度低,控制速度慢等问题,将粒子群优化(particle swarm optimization,PSO)算法和误差反传递(back propagation,BP)算法混合训练的PSO-BP网络引入到板形的识别与控制中.首先根据板形轧制的历史数据,建立预测板形的神经网络,得到反映板形控制手段对板形特征参数影响的效应矩阵,同时根据理论数据建立对板形进行模式识别的神经网络.这些都是离线进行的,而且对一批板材只需训练一次神经网络,在线轧制过程中只需要根据识别网络的识别结果和效应矩阵,便可以很快的得到需要的控制量.这种方法可以简化板形控制过程,提高控制速度,最后的仿真实验进一步说明了这种方法的有效性.

【Abstract】 In order to solve the problems of low-precision and slow control of the traditional algorithms in the pattern recognition and control of flatness,the neural network trained by hybrid algorithms of particle swarm optimization(PSO) and back propagation(BP)is introduced.According to the rolling data in history,the PSO-BP network for predicting flatness is trained.As a result,the effective matrix reflecting the effects of adjustable parameters on the eigen-parameters of flatness is obtained.At the same time,the network for recognizing flatness is trained based on theoretical data.The networks are trained only once for a batch of strips.And the corresponding adjustments of parameters can be quickly calculated on line based on the effective matrix.Therefore,this approach can simplify and speed up the control of flatness. Finally,its effectiveness is proved by the given case study.

【基金】 国家自然科学基金(60474042);辽宁省自然科学基金(20052033).
  • 【文献出处】 控制理论与应用 ,Control Theory & Applications , 编辑部邮箱 ,2007年04期
  • 【分类号】TG334.9
  • 【被引频次】44
  • 【下载频次】457
节点文献中: 

本文链接的文献网络图示:

本文的引文网络